IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224006790.html
   My bibliography  Save this article

Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels

Author

Listed:
  • Jia, Linrui
  • Lu, Lin
  • Gong, Quan
  • Jiao, Kai

Abstract

This study presents an analytical model for the radiative SkyCool radiators (RSCR) with various interior flowing channels by using Laplace transformations. Moreover, the convolution theory is applied to solve the problem of nonuniform temperature distribution on the RSCR. Then, an outdoor experiment is carried out to verify the proposed model. Subsequently, the influence of different channel geometries, flow rates, tilt angles and wind velocities on the cooling performances of RSCRs are investigated. The results indicate that increasing the RSCR's length, enlarging the pipe spacing, and decreasing the flow rate and thickness of RSCR can definitely intensify the cooling performances. The application suggestions for S-channel RSCR (SRSCR) and I-channel RSCR (IRSCR) are given. When the pipe spacing ratio is smaller than five, the IRSCR is recommended because of lower thermal interferences. By contrast, SRSCR is recommended once the dimensionless pipe spacing is greater than ten. For cases with smaller tilt angles but larger wind velocities, IRSCR is suggested, while SRSCR is prioritized for cases with opposite conditions. This research provides an effective analytical tool in the evaluation of cooling power generation by producing cold water, contributing valuable insights for the optimization of cooling efficiencies of RSCRs under varied configuration scenarios.

Suggested Citation

  • Jia, Linrui & Lu, Lin & Gong, Quan & Jiao, Kai, 2024. "Analytical and experimental analyses on cooling performances of radiative SkyCool radiators with various interior flowing channels," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006790
    DOI: 10.1016/j.energy.2024.130907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Zhang, Shuai & Jing, Weilong & Chen, Zhang & Zhang, Canying & Wu, Daxiong & Gao, Yanfeng & Zhu, Haitao, 2022. "Full daytime sub-ambient radiative cooling film with high efficiency and low cost," Renewable Energy, Elsevier, vol. 194(C), pages 850-857.
    3. Amir, A. & van Hout, R., 2019. "A transient model for optimizing a hybrid nocturnal sky radiation cooling system," Renewable Energy, Elsevier, vol. 132(C), pages 370-380.
    4. Bagiorgas, H.S. & Mihalakakou, G., 2008. "Experimental and theoretical investigation of a nocturnal radiator for space cooling," Renewable Energy, Elsevier, vol. 33(6), pages 1220-1227.
    5. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    6. Nwaji, G.N. & Okoronkwo, C.A. & Ogueke, N.V. & Anyanwu, E.E., 2020. "Investigation of a hybrid solar collector/nocturnal radiator for water heating/cooling in selected Nigerian cities," Renewable Energy, Elsevier, vol. 145(C), pages 2561-2574.
    7. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    8. Liu, Yang & Xie, Xiaoqing & Wang, Mei, 2023. "Energy structure and carbon emission: Analysis against the background of the current energy crisis in the EU," Energy, Elsevier, vol. 280(C).
    9. Tingxian Li & Minqiang Wu & Jiaxing Xu & Ruxue Du & Taisen Yan & Pengfei Wang & Zhaoyuan Bai & Ruzhu Wang & Siqi Wang, 2022. "Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Kwan, Trevor Hocksun & Zhao, Bin & Liu, Jie & Pei, Gang, 2020. "Performance analysis of the sky radiative and thermoelectric hybrid cooling system," Energy, Elsevier, vol. 200(C).
    11. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    12. Liu, Jie & Xu, Chengfeng & Ao, Xianze & Lu, Kegui & Zhao, Bin & Pei, Gang, 2022. "A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling," Energy, Elsevier, vol. 254(PA).
    13. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).
    14. Zhang, Yijie & Ma, Tao & Yang, Hongxing & Li, Zongyu & Wang, Yuhong, 2023. "Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement," Applied Energy, Elsevier, vol. 342(C).
    15. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    16. Hu, Mingke & Zhao, Bin & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Extending the operation of a solar air collector to night-time by integrating radiative sky cooling: A comparative experimental study," Energy, Elsevier, vol. 251(C).
    17. Jia, Linrui & Lu, Lin & Chen, Jianheng & Han, Jie, 2022. "A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions," Applied Energy, Elsevier, vol. 322(C).
    18. Ji, Yishuang & Lv, Song, 2023. "Experimental and numerical investigation on a radiative cooling driving thermoelectric generator system," Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Pospíšilík, Václav & Honus, Stanislav & Lukeš, Roman & Jadlovec, Marek & Štukavec, Ondřej, 2024. "Differences in heat losses between glazing of various emissivities related to night sky radiation: Experimental and numerical analysis," Energy, Elsevier, vol. 290(C).
    3. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    4. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    6. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    7. Alimohammadian, Mehdi & Dinarvand, Saeed & Mahian, Omid, 2022. "Innovative strategy of passive sub-ambient radiative cooler through incorporation of a thermal rectifier to double-layer nanoparticle-based coating," Energy, Elsevier, vol. 247(C).
    8. Lv, Song & Zhang, Mingming & Tian, Junwei & Zhang, Zexu & Duan, Zhiyu & Wu, Yangyang & Deng, Yirong, 2024. "Performance analysis of radiative cooling combined with photovoltaic-driven thermoelectric cooling system in practical application," Energy, Elsevier, vol. 294(C).
    9. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    10. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    11. Amir, A. & van Hout, R., 2019. "A transient model for optimizing a hybrid nocturnal sky radiation cooling system," Renewable Energy, Elsevier, vol. 132(C), pages 370-380.
    12. Rui-Jia Liu & Lin-Rui Jia & Wen-Shuo Zhang & Ming-Zhi Yu & Xu-Dong Zhao & Ping Cui, 2024. "Study of Heat Transfer Characteristics and Economic Analysis of a Closed Deep Coaxial Geothermal Heat Exchanger Retrofitted from an Abandoned Oil Well," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    13. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    14. Yan, Tian & Sun, Zhongwei & Gao, Jiajia & Xu, Xinhua & Yu, Jinghua & Gang, Wenjie, 2020. "Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation," Renewable Energy, Elsevier, vol. 146(C), pages 1451-1464.
    15. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    16. Liao, Tianjun & Xu, Qidong & Dai, Yawen & Cheng, Chun & He, Qijiao & Ni, Meng, 2022. "Radiative cooling-assisted thermoelectric refrigeration and power systems: Coupling properties and parametric optimization," Energy, Elsevier, vol. 242(C).
    17. Seo, Junyong & Choi, Minwoo & Yoon, Siwon & Lee, Bong Jae, 2023. "Climate-dependent optimization of radiative cooling structures for year-round cold energy harvesting," Renewable Energy, Elsevier, vol. 217(C).
    18. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    20. Xin, Yalu & Gao, Wei & Zhang, Chengbin & Chen, Yongping, 2024. "Scalable and sustainable radiative cooling enabled by renewable poplar catkin-derived films," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.