Experimental study of methane hydrate formation and agglomeration in waxy oil-in-water emulsions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129945
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Hyun Ju & Lee, Ju Dong & Linga, Praveen & Englezos, Peter & Kim, Young Seok & Lee, Man Sig & Kim, Yang Do, 2010. "Gas hydrate formation process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 35(6), pages 2729-2733.
- Lyu, Yang & Huang, Qiyu, 2023. "Flow characteristics of heavy oil-water flow during high water-content cold transportation," Energy, Elsevier, vol. 262(PA).
- Shi, Lingli & He, Yong & Lu, Jingsheng & Liang, Deqing, 2020. "Effect of dodecyl dimethyl benzyl ammonium chloride on CH4 hydrate growth and agglomeration in oil-water systems," Energy, Elsevier, vol. 212(C).
- Lyu, Yang & Huang, Qiyu & Liu, Luoqian & Zhang, Dongxu & Xue, Huiyong & Zhang, Fuqiang & Zhang, Hanwen & Li, Rongbin & Wang, Qiuchen, 2022. "Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation," Energy, Elsevier, vol. 250(C).
- Liu, Jia & Lin, Decai & Liang, Deqing & Li, Junhui & Song, Zhiguang, 2023. "Effect of cocoamidopropyl betaine on CH4 hydrate formation and agglomeration in waxy oil-water systems," Energy, Elsevier, vol. 270(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Xingshen & Hou, Lei & Tang, Shuaishuai & Wang, Mincong & Xiong, Yifan & Zhu, Zuoliang, 2024. "Removal mechanism of adhering heavy oil from pipeline wall in low-temperature flow," Energy, Elsevier, vol. 296(C).
- Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
- Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
- Lyu, Yang & Huang, Qiyu, 2023. "Flow characteristics of heavy oil-water flow during high water-content cold transportation," Energy, Elsevier, vol. 262(PA).
- Liu, Zaixing & Ma, Shihui & Wu, Zhaoran & Liu, Zheyuan & Wang, Jiguang & Lang, Chen & Li, Yanghui, 2024. "Investigation of flow and viscosity characteristics of hydrate slurries within a visual-loop system," Energy, Elsevier, vol. 289(C).
- Ding, Ya-Long & Xu, Chun-Gang & Yu, Yi-Song & Li, Xiao-Sen, 2017. "Methane recovery from natural gas hydrate with simulated IGCC syngas," Energy, Elsevier, vol. 120(C), pages 192-198.
- Muromachi, Sanehiro, 2021. "CO2 capture properties of semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts from H2 + CO2 mixed gas," Energy, Elsevier, vol. 223(C).
- Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2014. "Hydrogen storage in clathrate hydrates: Current state of the art and future directions," Applied Energy, Elsevier, vol. 122(C), pages 112-132.
- Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
- Liu, Jia & Lin, Decai & Liang, Deqing & Li, Junhui & Song, Zhiguang, 2023. "Effect of cocoamidopropyl betaine on CH4 hydrate formation and agglomeration in waxy oil-water systems," Energy, Elsevier, vol. 270(C).
- Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
- Zhao, Qi & Chen, Zhao-Yang & Li, Xiao-Sen & Xia, Zhi-Ming, 2023. "Experimental study of CO2 hydrate formation under an electrostatic field," Energy, Elsevier, vol. 272(C).
- Kim, Sungwoo & Kim, Soyoung & Mok, Junghoon & Seo, Yongwon, 2024. "Semiclathrate-based CO2 capture from pre-combustion fuel gas using tetra-n-butylammonium chloride: A thermodynamic, kinetic, and spectroscopic study," Energy, Elsevier, vol. 294(C).
- Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
- Cai, Jing & Zhang, Yu & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2018. "Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran," Applied Energy, Elsevier, vol. 214(C), pages 92-102.
- Xu, Chun-Gang & Zhang, Shao-Hong & Cai, Jing & Chen, Zhao-Yang & Li, Xiao-Sen, 2013. "CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis," Energy, Elsevier, vol. 59(C), pages 719-725.
- Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
- Yu, Yi-Song & Xu, Chun-Gang & Li, Xiao-Sen, 2018. "Crystal morphology-based kinetic study of carbon dioxide-hydrogen-tetra-n-butyl ammonium bromide hydrates formation in a static system," Energy, Elsevier, vol. 143(C), pages 546-553.
- Yang, Mingjun & Jing, Wen & Zhao, Jiafei & Ling, Zheng & Song, Yongchen, 2016. "Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide))," Energy, Elsevier, vol. 106(C), pages 546-553.
More about this item
Keywords
Deepwater multiphase flow lines; Flow assurance; Waxy emulsions; Hydrate blockage; Formation and agglomeration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303339x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.