IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031481.html
   My bibliography  Save this article

Investigation of the smashing characteristics induced by energy distribution of CO2 BLEVE for coalbed methane recovery

Author

Listed:
  • Shang, Zheng
  • Wang, Haifeng
  • Wang, Zhirong
  • Li, Bing
  • Dong, Jun
  • Guo, Pinkun

Abstract

Failure in the near field of coal by liquid CO2 phase transition blasting (LCO2-PB) is the major reason for fracturing performance and enhancing coalbed methane (ECBM) recovery. Features to clarify this failure are of significant importance for the field projects. Some studies have revealed that the energy of LCO2 releasing can determine the damage feature to some extent. This study was therefore initiated to investigate the effect of BLEVE energy on the fracturing performance of LCO2-PB in coal. A series of LCO2-PB fracturing tests was carried out on hard and soft coal to examine the effect of CO2 BLEVE energy on fracture morphology. It was obtained that, compared with fractal dimension of hard coal under lower import energy (623.48 kJ) is around 2.17, the higher import energy (831.36 kJ) provides a larger fractal dimension (2.32), especially for high rupture pressure (95 MPa), which make fragments smash into a smaller radial. Although higher input energy favours a large superfluous energy density for any coal types, soft coal represents a stronger tendency to fracture in the stress drop stage. Lower input energy in hard coal seam products a longer main fracture, and excellent fracturing in soft coal prefers the higher import energy.

Suggested Citation

  • Shang, Zheng & Wang, Haifeng & Wang, Zhirong & Li, Bing & Dong, Jun & Guo, Pinkun, 2024. "Investigation of the smashing characteristics induced by energy distribution of CO2 BLEVE for coalbed methane recovery," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031481
    DOI: 10.1016/j.energy.2023.129754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    2. Du, Xuanhong & Xue, Junhua & Shi, Yu & Cao, Chen-Rui & Shu, Chi-Min & Li, Kehan & Ma, Qian & Zhan, Keliang & Chen, Zhiheng & Wang, Shulou, 2023. "Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure," Energy, Elsevier, vol. 266(C).
    3. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    4. Xu, Jizhao & Zhai, Cheng & Ranjith, Pathegama Gamage & Sang, Shuxun & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2022. "Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery," Energy, Elsevier, vol. 239(PB).
    5. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    3. Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    5. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    6. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    7. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    8. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    9. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    10. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    11. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    12. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    13. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    14. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    15. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    16. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    17. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    18. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    19. Geng, Jiabo & Zeng, Gaoxiong & Liu, Cunyang & Li, Xiaoshuang & Zhang, Dongming, 2023. "Development and application of triaxial seepage test system for gas-water two-phase in coal rock," Energy, Elsevier, vol. 277(C).
    20. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.