IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics036054422302964x.html
   My bibliography  Save this article

Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems

Author

Listed:
  • Xu, Desheng
  • Li, Yanfeng
  • Du, Tianmei
  • Zhong, Hua
  • Huang, Youbo
  • Li, Lei
  • Xiangling, Duanmu

Abstract

Underground metro systems are expanding rapidly worldwide, necessitating research on energy-efficient ventilation systems, fire safety, and smoke control. This study investigates the optimisation of hybrid mechanical-natural ventilation for smoke control in complex metro stations. Full-scale winter/summer experiments and numerical simulations examined a double-deck atrium-type station. Results demonstrate the atrium fires are more significantly impacted by outdoor temperature variations versus concourse/platform fires, with a 70 K versus 30 K temperature rise above the fire respectively. The heat of the gathered high-temperature smoke inside the atrium can reach up to 900 K under a 5 MW train fire energy release. The dimensionless Archimedes number (Ar) defines the ratio of thermal buoyancy to gravitational forces. Cold exterior winter air (Ar<1) entering via the atrium ceiling openings restricted vertical smoke diffusion, enabling enhanced lateral propagation. With rising outdoor temperatures from −20 °C to 10 °C (Ar<1), the natural smoke extraction efficiency increased from 0 to 18 %, coupled with vertical airflow velocities accelerating from −3.5 m/s to 1.5 m/s. When outdoor temperatures were between 10 °C and 40 °C (Ar>1), airflow velocity only changed slightly. Empirical models predict internal temperature profiles as a function of external meteorology. The findings provide crucial engineering insights into integrating weather data and adaptable ventilation protocols for scenario-based smoke prevention/mitigation. Further work should examine seasonal variations beyond the tested -20‒40 °C range. Overall, considering outdoor climate effects allows 30 % optimisation of hybrid ventilation systems for fire safety in underground metro stations. This study promotes technological advances in energy-efficient transport infrastructure resilience.

Suggested Citation

  • Xu, Desheng & Li, Yanfeng & Du, Tianmei & Zhong, Hua & Huang, Youbo & Li, Lei & Xiangling, Duanmu, 2024. "Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s036054422302964x
    DOI: 10.1016/j.energy.2023.129570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302964X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jian & Yang, Fubin & Zhang, Hongguang & Wu, Zhong & Tian, Yaming & Hou, Xiaochen & Xu, Yonghong & Ren, Jing, 2020. "Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design," Energy, Elsevier, vol. 195(C).
    2. Dai, Baolian & Tong, Yan & Hu, Qi & Chen, Zheng, 2022. "Characteristics of thermal stratification and its effects on HVAC energy consumption for an atrium building in south China," Energy, Elsevier, vol. 249(C).
    3. Desheng Xu & Yanfeng Li & Junmei Li & Jin Zhang & Jiaxin Li, 2021. "Investigation on the Effect of Platform Height on Smoke Characteristics of Fire Scenarios for Subway Stations," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    4. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    5. Martin Lyubomirov Ivanov & Wei Peng & Qi Wang & Wan Ki Chow, 2021. "Sustainable Smoke Extraction System for Atrium: A Numerical Study," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    6. Huang, Youbo & Liu, Xi & Shi, Long & Dong, Bingyan & Zhong, Hua, 2023. "Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis," Energy, Elsevier, vol. 282(C).
    7. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Desheng & Li, Yanfeng & Li, Jiaxin & Zhong, Hua & Li, Junmei & Huang, Youbo, 2024. "Climate-adaptive fire smoke ventilation strategies for atrium-type metro stations: A NSGA-II multi-objective optimisation study," Energy, Elsevier, vol. 306(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).
    2. Li, Jian & Yang, Fubin & Zhang, Hongguang & Wu, Zhong & Tian, Yaming & Hou, Xiaochen & Xu, Yonghong & Ren, Jing, 2020. "Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design," Energy, Elsevier, vol. 195(C).
    3. Xu, Desheng & Li, Yanfeng & Li, Jiaxin & Zhong, Hua & Li, Junmei & Huang, Youbo, 2024. "Climate-adaptive fire smoke ventilation strategies for atrium-type metro stations: A NSGA-II multi-objective optimisation study," Energy, Elsevier, vol. 306(C).
    4. Li, Jian & Zuo, Zhengxing & Jia, Boru & Feng, Huihua & Mei, Bingang & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Operating characteristics and design parameter optimization of permanent magnet linear generator applied to free-piston energy converter," Energy, Elsevier, vol. 287(C).
    5. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    6. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    7. Xia, Xiaoxia & Yang, Chengwu & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Wu, Jinhao, 2024. "Multi-objective optimization of the dual-pressure organic Rankine cycle system based on the orthogonal design method under different external conditions," Energy, Elsevier, vol. 296(C).
    8. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    9. Xu, Yonghong & Zhang, Hongguang & Yang, Fubin & Tong, Liang & Yan, Dong & Yang, Yifan & Wang, Yan & Wu, Yuting, 2022. "Performance of compressed air energy storage system under parallel operation mode of pneumatic motor," Renewable Energy, Elsevier, vol. 200(C), pages 185-217.
    10. Hailong Yang & Yonghong Xu & Xiaohui Zhong & Jiajun Zeng & Fubin Yang, 2024. "Experimental Investigation on the Performance of the Scroll Expander under Various Driving Cycles," Energies, MDPI, vol. 17(2), pages 1-24, January.
    11. Dorota Brzezińska & Maria Brzezińska, 2022. "Performance-Based Solutions of Thermal and Smoke Control Ventilation in Industrial Power Plant Buildings," Energies, MDPI, vol. 15(19), pages 1-15, October.
    12. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    13. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    14. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    15. He, Junjie & Chu, Wenxiao & Wang, Qiuwang, 2024. "Interfacial heat transfer and melt-front evolution at a Fractal Cantor structured interface under various PCM melting conditions," Energy, Elsevier, vol. 294(C).
    16. Desheng Xu & Yanfeng Li & Junmei Li & Jin Zhang & Jiaxin Li, 2021. "Investigation on the Effect of Platform Height on Smoke Characteristics of Fire Scenarios for Subway Stations," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    17. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    18. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    19. Guo, Xiaochao & Ma, Zhixian & Zhang, Jili, 2020. "Performance analysis of a novel integrated home energy system with freezing latent heat collection," Applied Energy, Elsevier, vol. 264(C).
    20. Bin Li & Zheng Cui & Qun Cao & Wei Shao, 2021. "Increasing Efficiency of a Finned Heat Sink Using Orthogonal Analysis," Energies, MDPI, vol. 14(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s036054422302964x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.