IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i13p7406-d587140.html
   My bibliography  Save this article

Sustainable Smoke Extraction System for Atrium: A Numerical Study

Author

Listed:
  • Martin Lyubomirov Ivanov

    (Academy of the Ministry of Interior, 1715 Sofia, Bulgaria)

  • Wei Peng

    (School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China)

  • Qi Wang

    (Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

  • Wan Ki Chow

    (Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

Smoke extraction systems, either static with natural ventilation, or dynamic with mechanical ventilation are required to keep smoke layer at high levels in many tall atria. It is observed that a design fire with high heat release rate (HRR) is commonly used for designing natural vents, but a low HRR is used for mechanical ventilation system. This will not produce a sustainable environment. There are no internationally agreed on design guides to determine the HRR in the design fire for different extraction systems and scenarios. This issue will be studied using a Computational Fluid Dynamics (CFD)-based software, the Fire Dynamics Simulator (FDS) version 6.7.1. Simulations on natural smoke filling, static and dynamic smoke extractions were carried out in a big example atrium. CFD-FDS predictions were compared with previous full-scale burning tests. Results confirmed that static smoke extraction is a good option for big fires, and a dynamic system is best for small fires. A sustainable new hybrid design combining the advantages of static and dynamic systems is proposed, which could result in a lower smoke temperature and higher smoke layer interface height, indicating a better extraction design.

Suggested Citation

  • Martin Lyubomirov Ivanov & Wei Peng & Qi Wang & Wan Ki Chow, 2021. "Sustainable Smoke Extraction System for Atrium: A Numerical Study," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7406-:d:587140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/13/7406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/13/7406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheli Xing & Jinfeng Mao & Yuliang Huang & Jin Zhou & Wei Mao & Feifan Deng, 2015. "Scaled Experimental Study on Maximum Smoke Temperature along Corridors Subject to Room Fires," Sustainability, MDPI, vol. 7(8), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desheng Xu & Yanfeng Li & Junmei Li & Jin Zhang & Jiaxin Li, 2021. "Investigation on the Effect of Platform Height on Smoke Characteristics of Fire Scenarios for Subway Stations," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    2. Maria Brzezińska & Dorota Brzezińska, 2022. "Contemporary Atrium Architecture: A Sustainable Approach to the Determination of Smoke Ventilation Criteria in the Event of a Fire," Energies, MDPI, vol. 15(7), pages 1-16, March.
    3. Dorota Brzezińska & Maria Brzezińska, 2022. "Performance-Based Solutions of Thermal and Smoke Control Ventilation in Industrial Power Plant Buildings," Energies, MDPI, vol. 15(19), pages 1-15, October.
    4. Xu, Desheng & Li, Yanfeng & Du, Tianmei & Zhong, Hua & Huang, Youbo & Li, Lei & Xiangling, Duanmu, 2024. "Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems," Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay Kumar Khattri & Torgrim Log & Arjen Kraaijeveld, 2019. "Tunnel Fire Dynamics as a Function of Longitudinal Ventilation Air Oxygen Content," Sustainability, MDPI, vol. 11(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:13:p:7406-:d:587140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.