IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7396-d936874.html
   My bibliography  Save this article

Performance-Based Solutions of Thermal and Smoke Control Ventilation in Industrial Power Plant Buildings

Author

Listed:
  • Dorota Brzezińska

    (Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wolczanska Street, 90-924 Lodz, Poland)

  • Maria Brzezińska

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland)

Abstract

Industrial power plant buildings differ from all other types of buildings, mainly due to their significant heights and volumes without internal floor sections, exceptionally heat gains during daily work, and potentially high fire risk. Those buildings consist of boiler and turbine houses with multilevel stairways. This complicated architecture creates an extraordinary natural thermal stack effect, causing special ventilation and smoke control systems requirements, adapted to their specific structures and internal conditions. The paper demonstrates a proposal for optimal thermal smoke control ventilation solutions in industrial power plant buildings designated on the basis of performance-based calculations and confirmed by CFD simulations. It demonstrates the possibilities of using daily ventilation in the boiler houses in a function of smoke control systems in the event of a fire and defines fundamental rules for designing the system. Additionally, a new method of sufficient staircase (pylons) protection with a modified pressurization system is proposed.

Suggested Citation

  • Dorota Brzezińska & Maria Brzezińska, 2022. "Performance-Based Solutions of Thermal and Smoke Control Ventilation in Industrial Power Plant Buildings," Energies, MDPI, vol. 15(19), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7396-:d:936874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Lyubomirov Ivanov & Wei Peng & Qi Wang & Wan Ki Chow, 2021. "Sustainable Smoke Extraction System for Atrium: A Numerical Study," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    2. Margherita Ferrucci & Piercarlo Romagnoni & Fabio Peron & Mauro Strada, 2022. "Computational Fluid Dynamic Study with Comfort Analysis in Large Atrium of the Angelo Hospital in Venice," Energies, MDPI, vol. 15(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desheng Xu & Yanfeng Li & Junmei Li & Jin Zhang & Jiaxin Li, 2021. "Investigation on the Effect of Platform Height on Smoke Characteristics of Fire Scenarios for Subway Stations," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    2. Xu, Desheng & Li, Yanfeng & Du, Tianmei & Zhong, Hua & Huang, Youbo & Li, Lei & Xiangling, Duanmu, 2024. "Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems," Energy, Elsevier, vol. 287(C).
    3. Maria Brzezińska & Dorota Brzezińska, 2022. "Contemporary Atrium Architecture: A Sustainable Approach to the Determination of Smoke Ventilation Criteria in the Event of a Fire," Energies, MDPI, vol. 15(7), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7396-:d:936874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.