IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028505.html
   My bibliography  Save this article

Optimization of large portfolio allocation for new-energy stocks: Evidence from China

Author

Listed:
  • Wu, Yunlin
  • Huang, Lei
  • Jiang, Hui

Abstract

Investment in the fast-growing new-energy of China has gradually attracted great attention. At present, more than 100 new-energy stocks are listed on China’s stock markets. How to effectively manage the investment risk of these stocks and achieve better returns is of great interest to investors and policymakers. In finance, mean–variance portfolio (MVP) is often applied to solve portfolio allocation problems. However, when investing in numerous stocks, the classical MVP is no longer applicable. For large portfolio allocation, this study constructs a comprehensive MVP model, called an unconstrained regression model with latent factors (URELAF). It applies a factor structure with latent factors to modify the covariance matrix estimation in the classical MVP, using an unconstrained penalized regression to estimate the allocation. In addition, to more realistically simulate the investment of stock markets, transaction costs are considered. The empirical results show that URELAF model can control the risk with Sharpe ratio reaching 6 times as many as MVP model, and even improve about 26% compared with the sub-optimal portfolio model. URELAF also outperforms other portfolios with transaction costs. Finally, hypothesis tests further verify that URELAF can significantly improve portfolio performance compared with other portfolio methods for China’s new-energy market.

Suggested Citation

  • Wu, Yunlin & Huang, Lei & Jiang, Hui, 2023. "Optimization of large portfolio allocation for new-energy stocks: Evidence from China," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028505
    DOI: 10.1016/j.energy.2023.129456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gatfaoui, Hayette, 2019. "Diversifying portfolios of U.S. stocks with crude oil and natural gas: A regime-dependent optimization with several risk measures," Energy Economics, Elsevier, vol. 80(C), pages 132-152.
    2. Chan, Louis K C & Hamao, Yasushi & Lakonishok, Josef, 1991. "Fundamentals and Stock Returns in Japan," Journal of Finance, American Finance Association, vol. 46(5), pages 1739-1764, December.
    3. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    6. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    7. Ma, Yilin & Wang, Yudong & Wang, Weizhong & Zhang, Chong, 2023. "Portfolios with return and volatility prediction for the energy stock market," Energy, Elsevier, vol. 270(C).
    8. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. Lv, Fei & Yang, Chen & Fang, Libing, 2020. "Do the crude oil futures of the Shanghai International Energy Exchange improve asset allocation of Chinese petrochemical-related stocks?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    11. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    12. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    13. Jianqing Fan & Jianhua Guo & Shurong Zheng, 2022. "Estimating Number of Factors by Adjusted Eigenvalues Thresholding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 852-861, April.
    14. Kuang, Wei, 2021. "Which clean energy sectors are attractive? A portfolio diversification perspective," Energy Economics, Elsevier, vol. 104(C).
    15. Mengmeng Ao & Li Yingying & Xinghua Zheng, 2019. "Approaching Mean-Variance Efficiency for Large Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 32(7), pages 2890-2919.
    16. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
    17. Gaorong Li & Lei Huang & Jin Yang & Wenyang Zhang, 2022. "A Synthetic Regression Model for Large Portfolio Allocation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1665-1677, October.
    18. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    19. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    20. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    21. Chen, Chen & Liu, Dinghao & Xian, Liang & Pan, Lin & Wang, Lihua & Yang, Min & Quan, Li, 2020. "Best-case scenario robust portfolio for energy stock market," Energy, Elsevier, vol. 213(C).
    22. Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
    23. Bai, Lan & Liu, Yuntong & Wang, Qian & Chen, Chen, 2019. "Improving portfolio performance of renewable energy stocks using robust portfolio approach: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    24. Ming, Zeng & Ximei, Liu & Yulong, Li & Lilin, Peng, 2014. "Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 23-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yong-Jun & Yang, Guo-Sen & Zhang, Wei-Guo, 2024. "A novel regret-rejoice cross-efficiency approach for energy stock portfolio optimization," Omega, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    2. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    4. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    5. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    6. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    7. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    8. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    9. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    10. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    11. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    12. Caner, Mehmet & Medeiros, Marcelo & Vasconcelos, Gabriel F.R., 2023. "Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 393-417.
    13. Bodnar, Taras & Reiß, Markus, 2016. "Exact and asymptotic tests on a factor model in low and large dimensions with applications," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 125-151.
    14. Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "Estimation of Cross-Sectional Dependence in Large Panels," Papers 1904.06843, arXiv.org.
    15. Jiti Gao & Guangming Pan & Yanrong Yang & Bo Zhang, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Monash Econometrics and Business Statistics Working Papers 9/19, Monash University, Department of Econometrics and Business Statistics.
    16. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    17. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
    18. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    19. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    20. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.