IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026993.html
   My bibliography  Save this article

Evolutionary mechanism of permeability of coal-rock combination considering interface effect: Model development and analysis

Author

Listed:
  • Wang, Kai
  • Wang, Long
  • Du, Feng
  • Zhao, Wei
  • Dong, Huzi
  • Guo, Yangyang
  • Ju, Yang

Abstract

The existing permeability model for the coal-rock combinations treats coal and rock as parallel entities, neglecting the interface effect arising from their distinct mechanical responses. In this study, the differential deformation of coal and rock is investigated through triaxial compression-acoustic emission (AE)-seepage synchronous tests. By deriving the additional stress caused by the differential deformation at the interface, a permeability model that accounts for this interface effect is established and validated. The influencing mechanisms of permeability are quantitatively observed using the proposed model. The results show that the permeability of the coal-rock combination increases with the increase of kc0, kr0, ξc, and Lrt, and decreases with the increase of vc and Lct. Comparing kc0 and kr0, Lct and Lrt respectively, kr0 and Lct have a greater impact on the permeability of the coal-rock combination. ξc only affects the plastic section. Finally, for the low-permeability coal seam with poor permeability improvement, permeability improvement measures can be taken on the roof and floor are proposed to enhance the gas flow. This research holds significance for gas extraction and the prevention of compound dynamic disasters.

Suggested Citation

  • Wang, Kai & Wang, Long & Du, Feng & Zhao, Wei & Dong, Huzi & Guo, Yangyang & Ju, Yang, 2023. "Evolutionary mechanism of permeability of coal-rock combination considering interface effect: Model development and analysis," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026993
    DOI: 10.1016/j.energy.2023.129305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yinbo & Li, Hansheng & Huang, Jilei & Zhang, Ruilin & Wang, Shijie & Hong, Yidu & Yang, Yongliang, 2021. "Influence of coal deformation on the Knudsen number of gas flow in coal seams," Energy, Elsevier, vol. 233(C).
    2. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    3. Tang, Jiren & Chen, Long & Liu, Wenchuan & Zhang, Huali & Wang, Junxin & Liu, Qi, 2023. "Investigation on jet diffusion mechanism with applications to enhancing efficiency in forming directional fractures," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liang & Wu, Songwei & Li, Ziwei & An, Fenghua & Lu, Zhuang & Su, Sheng & Jiang, Changbao, 2024. "Diffusion distance variations in coal pulverization based on equivalent matrix size: Implications for coal and gas outburst indicators," Energy, Elsevier, vol. 305(C).
    2. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    3. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    4. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    5. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    6. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    7. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    8. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).
    9. Ozotta, Ogochukwu & Kolawole, Oladoyin & Lamine Malki, Mohamed & Ore, Tobi & Gentzis, Thomas & Fowler, Hallie & Liu, Kouqi & Ostadhassan, Mehdi, 2022. "Nano- to macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2," Applied Energy, Elsevier, vol. 326(C).
    10. Zhao, Jian & Liao, Hualin & Xu, Yiji & Shi, Fengxia & Sun, Baojing & Chang, Fangrui & Han, Xiaoqiang, 2023. "Experimental and theoretical evaluation of tubing cutting with rotating particle jet in oil and gas borehole operation," Energy, Elsevier, vol. 282(C).
    11. He, Qianyang & Li, Delu & Sun, Qiang & Wei, Baowei & Wang, Shaofei, 2022. "Main controlling factors of marine shale compressive strength: A case study on the cambrian Niutitang Formation in Dabashan Mountain," Energy, Elsevier, vol. 260(C).
    12. Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
    13. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    14. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    15. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    16. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    17. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    18. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    19. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    20. Mingyue Jia & Wenhui Huang & Yuan Li, 2023. "Quantitative Characterization of Pore Structure Parameters in Coal Based on Image Processing and SEM Technology," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.