IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222024549.html
   My bibliography  Save this article

Investigation on jet diffusion mechanism with applications to enhancing efficiency in forming directional fractures

Author

Listed:
  • Tang, Jiren
  • Chen, Long
  • Liu, Wenchuan
  • Zhang, Huali
  • Wang, Junxin
  • Liu, Qi

Abstract

The jet-based technologies were introduced in roof directional pre-cutting, which is one of the critical technologies in the no-pillar mining method without excavating mining roadways. Based on the laboratory and field experiments, both directional hydraulic fracturing and hydraulic slotting technologies were able to form the directional fractures, and their performances were affected by cutting efficiency. Jet diffusion was affected by flow instabilities and had effects on cutting efficiency. To further enhance the cutting efficiency, numerical simulations based on the modified cavitation and turbulence models were performed to elucidate the jet diffusion mechanism, and a new type of slotter is designed to address the problems of jet diffusion and the short service life of the current original slotter. Cavitation-vortex interaction was observed in the slotter and worked together with turbulence to account for the jet diffusion. The new slotter weakened the instabilities induced by both turbulence and bubble collapse/burst, and thus suppressed the diffusion disintegration process of the jet. Compared with the conventional slotter, the diffusion angle of the new slotter is reduced by 50%, and the slotting performance is improved by 30%. The present study serves as a supplement to channel optimization, contributing to the further enhancement of pre-cutting efficiency.

Suggested Citation

  • Tang, Jiren & Chen, Long & Liu, Wenchuan & Zhang, Huali & Wang, Junxin & Liu, Qi, 2023. "Investigation on jet diffusion mechanism with applications to enhancing efficiency in forming directional fractures," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024549
    DOI: 10.1016/j.energy.2022.125568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    2. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    3. Yang, Lei & Wu, Shan & Gao, Ke & Shen, Luming, 2022. "Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling," Energy, Elsevier, vol. 254(PC).
    4. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    5. Sharma, Deepankar & Patwardhan, Ashwin & Ranade, Vivek, 2018. "Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector," Energy, Elsevier, vol. 164(C), pages 10-20.
    6. Wang, Kai & Han, Tao & Deng, Jun & Zhang, Yanni, 2022. "Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China," Energy, Elsevier, vol. 254(PB).
    7. Zhang, Huidong & Liu, Yong & Tang, Jiren & Liu, Wenchuan & Chen, Changjiang, 2022. "Investigation on the fluctuation characteristics and its influence on impact force of supercritical carbon dioxide jet," Energy, Elsevier, vol. 253(C).
    8. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jian & Liao, Hualin & Xu, Yiji & Shi, Fengxia & Sun, Baojing & Chang, Fangrui & Han, Xiaoqiang, 2023. "Experimental and theoretical evaluation of tubing cutting with rotating particle jet in oil and gas borehole operation," Energy, Elsevier, vol. 282(C).
    2. Wang, Kai & Wang, Long & Du, Feng & Zhao, Wei & Dong, Huzi & Guo, Yangyang & Ju, Yang, 2023. "Evolutionary mechanism of permeability of coal-rock combination considering interface effect: Model development and analysis," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    2. Wang, Song & Zhou, Jian & Zhang, Luqing & Han, Zhenhua & Kong, Yanlong, 2024. "Numerical insight into hydraulic fracture propagation in hot dry rock with complex natural fracture networks via fluid-solid coupling grain-based modeling," Energy, Elsevier, vol. 295(C).
    3. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    4. Zhao, Jian & Liao, Hualin & Xu, Yiji & Shi, Fengxia & Sun, Baojing & Chang, Fangrui & Han, Xiaoqiang, 2023. "Experimental and theoretical evaluation of tubing cutting with rotating particle jet in oil and gas borehole operation," Energy, Elsevier, vol. 282(C).
    5. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    6. Mahmoodi-Eshkaftaki, Mahmood & Dalvi-Isfahan, Mohsen, 2024. "Multiple exegetically optimization of ultrasonic pretreatment and substrate mixture for biohydrogen and biomethane improvement," Energy, Elsevier, vol. 292(C).
    7. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    8. Tomasz Kuś & Paweł Madejski, 2024. "Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO 2," Energies, MDPI, vol. 17(9), pages 1-15, May.
    9. Zhe Liu & Qun Lei & Dingwei Weng & Lifeng Yang & Xin Wang & Zhen Wang & Meng Fan & Jiulong Wang, 2023. "A Powerful Prediction Framework of Fracture Parameters for Hydraulic Fracturing Incorporating eXtreme Gradient Boosting and Bayesian Optimization," Energies, MDPI, vol. 16(23), pages 1-24, December.
    10. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).
    11. Wei Cui & Qingjun Meng & Wenbo Li & Qiyan Feng, 2022. "Enrichment and Chemical Speciation of Vanadium and Cobalt in Stone Coal Combustion Products in Ankang, Shanxi Province, China," IJERPH, MDPI, vol. 19(15), pages 1-13, July.
    12. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    13. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    14. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    15. Deng, Jun & Qu, Gaoyang & Ren, Shuaijing & Wang, Caiping & Su, Hui & Yuan, Yu & Duan, Xiadan & Yang, Nannan & Wang, Jinrui, 2024. "Effect of water soaking and air drying on the thermal effect and heat transfer characteristics of coal oxidation at the low-temperature oxidation stage," Energy, Elsevier, vol. 288(C).
    16. Ghorbani, Bahram & Mahyari, Kimiya Borzoo & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2020. "Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery," Renewable Energy, Elsevier, vol. 148(C), pages 1227-1243.
    17. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
    18. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Impact of methane gas diffusion in coal on elastic modulus and porosity: Modeling and analysis," Energy, Elsevier, vol. 271(C).
    19. Guo, Bei-Er & Xiao, Nan & Martyushev, Dmitriy & Zhao, Zhi, 2024. "Deep learning-based pore network generation: Numerical insights into pore geometry effects on microstructural fluid flow behaviors of unconventional resources," Energy, Elsevier, vol. 294(C).
    20. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222024549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.