IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018000.html
   My bibliography  Save this article

Investigation on coal permeability evolution considering the internal differential strain and its effects on CO2 sequestration capacity in deep coal seams

Author

Listed:
  • Lin, Xiaosong
  • Liu, Zhengdong
  • Zhu, Wancheng
  • Zhao, Tingting
  • Liu, Shuyuan
  • Sun, Chen
  • Bai, Gang
  • Zhang, Yihuai

Abstract

The gas adsorption/desorption-induced coal deformation effect is a significant factor governing the evolution of coalbed permeability. Current theoretical investigations typically coal bulk and fracture deformation induced by gas are equivalent, neglecting the matrix-fracture interactions. Based on internal adsorption stress, this paper proposes Internal Differential Strain Coefficient (IDSC) to quantitatively characterize the relationship between coal bulk and fracture strain under equilibrium conditions. Coupling this coefficient constructs a binary gas permeability evolution model considering matrix-fracture interactions. Through numerical simulations of CO2-ECBM processes under various internal differential strain circumstances using this model, dynamic evolution patterns of diverse parameters are obtained. The research findings indicate that along the direction of CO2 injection, matrix-fracture interactions exhibit a complex trend of initially increasing, then decreasing and then increasing, and the increase in internal differential strain levels results in a downward trend in permeability peak. Additionally, the evolutionary characteristics of CH4 recovery and cumulative CO2 storage rising with increasing internal differential strain levels were obtained on time scales using a fixed-point monitoring methodology. Inspired by the aforementioned laws, this paper discusses the macroscopic influence of burial depth on the effects of internal differential strain, providing new theoretical support for CO2 sequestration injection methods in deep coal seams.

Suggested Citation

  • Lin, Xiaosong & Liu, Zhengdong & Zhu, Wancheng & Zhao, Tingting & Liu, Shuyuan & Sun, Chen & Bai, Gang & Zhang, Yihuai, 2024. "Investigation on coal permeability evolution considering the internal differential strain and its effects on CO2 sequestration capacity in deep coal seams," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018000
    DOI: 10.1016/j.energy.2024.132026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.