IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920311910.html
   My bibliography  Save this article

Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework

Author

Listed:
  • You, Junyu
  • Ampomah, William
  • Sun, Qian

Abstract

In this article, a robust machine-learning-based computational framework that couples multi-layer neural network (MLNN) proxies and a multi-objective particle swarm optimizer (MOPSO) to design water-alternating-carbon dioxide injection (CO2-WAG) projects is presented. The proposed optimization protocol considers various objectives, including oil recovery and CO2 storage volume. Expert MLNN systems are trained and employed as surrogate models of the high-fidelity compositional simulator in the optimization workflow. When multiple objective functions are considered, two approaches are employed to treat the objectives: the weighted sum method and the Pareto-front-based scheme. A field-scale implementation focusing on tertiary recovery in the Morrow B formation at Farnsworth Unit (FWU) is presented. The developed Pareto-optimal solutions indicate the maximal available oil production can be 1.64 × 107 barrels and maximal carbon storage can achieve 2.35 × 107 tons. Trade-offs factor is defined to divide the constructed Pareto front into 4 sections with the trade-off factors’ value ranges from 0.35 to 49.9. This work also compares the optimum solution found by the aggregative objective function and the solution repository covered by the Pareto front that considers the physical and operational constraints and reduces uncertainties involved by the multi-objective optimization process. Our comparison indicates multiple solutions exist to satisfy the objective criteria of the WAG design, and these results cannot be found using the traditional weighted sum method. The Pareto front solution can provide more options for project designers, but decisions regarding necessary trade-offs must be made using the solution repository to balance the project economics and CO2 storage amount.

Suggested Citation

  • You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920311910
    DOI: 10.1016/j.apenergy.2020.115695
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Say, Nuriye Peker & Yucel, Muzaffer, 2006. "Energy consumption and CO2 emissions in Turkey: Empirical analysis and future projection based on an economic growth," Energy Policy, Elsevier, vol. 34(18), pages 3870-3876, December.
    2. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    3. Leach, Andrew & Mason, Charles F. & Veld, Klaas van ‘t, 2011. "Co-optimization of enhanced oil recovery and carbon sequestration," Resource and Energy Economics, Elsevier, vol. 33(4), pages 893-912.
    4. Wang, Zhiyu & Wang, Jinsheng & Lan, Christopher & He, Ian & Ko, Vivien & Ryan, David & Wigston, Andrew, 2016. "A study on the impact of SO2 on CO2 injectivity for CO2 storage in a Canadian saline aquifer," Applied Energy, Elsevier, vol. 184(C), pages 329-336.
    5. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    6. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    7. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    8. Zhou, Wenji & Wang, Tao & Yu, Yadong & Chen, Dingjiang & Zhu, Bing, 2016. "Scenario analysis of CO2 emissions from China’s civil aviation industry through 2030," Applied Energy, Elsevier, vol. 175(C), pages 100-108.
    9. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    10. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    11. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    12. Nimana, Balwinder & Canter, Christina & Kumar, Amit, 2015. "Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands," Applied Energy, Elsevier, vol. 143(C), pages 189-199.
    13. Khatib, Hisham, 2012. "IEA World Energy Outlook 2011—A comment," Energy Policy, Elsevier, vol. 48(C), pages 737-743.
    14. William Ampomah & Robert S. Balch & Reid B. Grigg & Brian McPherson & Robert A. Will & Si‐Yong Lee & Zhenxue Dai & Feng Pan, 2017. "Co‐optimization of CO 2 ‐EOR and storage processes in mature oil reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 128-142, February.
    15. Gunter, W. D. & Wong, S. & Cheel, D. B. & Sjostrom, G., 1998. "Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective," Applied Energy, Elsevier, vol. 61(4), pages 209-227, December.
    16. Mohammad Ali Ahmadi, 2015. "Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Jia & Ting Xiao & Zhidi Wu & Zhenxue Dai & Brian McPherson, 2021. "Impact of Mineral Reactive Surface Area on Forecasting Geological Carbon Sequestration in a CO 2 -EOR Field," Energies, MDPI, vol. 14(6), pages 1-22, March.
    2. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    3. Bocoum, Alassane Oumar & Rasaei, Mohammad Reza, 2023. "Multi-objective optimization of WAG injection using machine learning and data-driven Proxy models," Applied Energy, Elsevier, vol. 349(C).
    4. Jin, Wencheng & Atkinson, Trevor A. & Doughty, Christine & Neupane, Ghanashyam & Spycher, Nicolas & McLing, Travis L. & Dobson, Patrick F. & Smith, Robert & Podgorney, Robert, 2022. "Machine-learning-assisted high-temperature reservoir thermal energy storage optimization," Renewable Energy, Elsevier, vol. 197(C), pages 384-397.
    5. Naghizadeh, Arefeh & Jafari, Saeed & Norouzi-Apourvari, Saied & Schaffie, Mahin & Hemmati-Sarapardeh, Abdolhossein, 2024. "Multi-objective optimization of water-alternating flue gas process using machine learning and nature-inspired algorithms in a real geological field," Energy, Elsevier, vol. 293(C).
    6. Aaditya Khanal & Md Fahim Shahriar, 2022. "Physics-Based Proxy Modeling of CO 2 Sequestration in Deep Saline Aquifers," Energies, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    2. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    3. Chen, Bailian & Harp, Dylan R. & Lin, Youzuo & Keating, Elizabeth H. & Pawar, Rajesh J., 2018. "Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach," Applied Energy, Elsevier, vol. 225(C), pages 332-345.
    4. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2016. "Ant Lion Optimization Algorithm for Renewable Distributed Generations," Energy, Elsevier, vol. 116(P1), pages 445-458.
    5. Wang, Xiao & van ’t Veld, Klaas & Marcy, Peter & Huzurbazar, Snehalata & Alvarado, Vladimir, 2018. "Economic co-optimization of oil recovery and CO2 sequestration," Applied Energy, Elsevier, vol. 222(C), pages 132-147.
    6. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    7. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    8. Turgay Ertekin & Qian Sun, 2019. "Artificial Intelligence Applications in Reservoir Engineering: A Status Check," Energies, MDPI, vol. 12(15), pages 1-22, July.
    9. Golberg, Alexander, 2015. "Environmental exergonomics for sustainable design and analysis of energy systems," Energy, Elsevier, vol. 88(C), pages 314-321.
    10. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    11. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    12. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
    13. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    14. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    15. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    16. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    17. Xu, Mengmeng & Lin, Boqiang & Wang, Siquan, 2021. "Towards energy conservation by improving energy efficiency? Evidence from China’s metallurgical industry," Energy, Elsevier, vol. 216(C).
    18. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    19. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    20. Sun, Wantong & Wei, Na & Zhao, Jinzhou & Kvamme, Bjørn & Zhou, Shouwei & Zhang, Liehui & Almenningen, Stian & Kuznetsova, Tatiana & Ersland, Geir & Li, Qingping & Pei, Jun & Li, Cong & Xiong, Chenyang, 2022. "Imitating possible consequences of drilling through marine hydrate reservoir," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920311910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.