IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020212.html
   My bibliography  Save this article

Experimental study on the performance of a great progress 10 kW organic Rankine cycle for low-grade heat source based on scroll-type expander

Author

Listed:
  • Feng, Yong-qiang
  • Liang, Hui-jie
  • Xu, Kangjing
  • Wang, Yu
  • Lu, Yuanyuan
  • Lin, Chih-Hung
  • Hung, Tzu-Chen

Abstract

Based on the experimental experience of the previous 3 kW and original 10 kW organic Rankine cycle (ORC) systems, an improved 10 kW ORC experimental prototype using a scroll-type expander is built incorporating improvements to the lubricant oil loop and expander. The heat source temperature is 120 °C, while the heat supply is in range of 34–77 kW. The effects of heat supply, expander pressure difference, and degree of superheat on net power and net power-generating efficiency are discussed, and a comparison between the improved 10 kW ORC system and the original 10 kW ORC system is conducted. Results indicate that the net power and net power-generating efficiency exhibit a sharp increasing trend with the expander pressure difference for a certain mass flow rate, and the optimum degree of superheat for achieving the highest net power of 4.0 kW is found to be 10 °C. The improved 10 kW ORC system achieves an optimal net power-generating efficiency of 7.9%, which is 72.11% higher than the original 10 kW ORC system of 4.59%. Compared to the original 10 kW ORC system, the improved 10 kW ORC system achieves a net power increase of 188.79%–414.29% and a net power-generating efficiency improvement of 178.34%–416.89%. This study provides a guide for the design of the ORC experimental prototype, and has important academic significance and application value for enhancing the system efficiency.

Suggested Citation

  • Feng, Yong-qiang & Liang, Hui-jie & Xu, Kangjing & Wang, Yu & Lu, Yuanyuan & Lin, Chih-Hung & Hung, Tzu-Chen, 2023. "Experimental study on the performance of a great progress 10 kW organic Rankine cycle for low-grade heat source based on scroll-type expander," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020212
    DOI: 10.1016/j.energy.2023.128627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jingye & Yu, Binbin & Ye, Zhenhong & Shi, Junye & Chen, Jiangping, 2019. "Experimental investigation of the impact of lubricant oil ratio on subcritical organic Rankine cycle for low-temperature waste heat recovery," Energy, Elsevier, vol. 188(C).
    2. Aryanfar, Yashar & Mohtaram, Soheil & García Alcaraz, Jorge Luis & Sun, HongGuang, 2023. "Energy and exergy assessment and a competitive study of a two-stage ORC for recovering SFGC waste heat and LNG cold energy," Energy, Elsevier, vol. 264(C).
    3. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    4. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    5. Eyerer, Sebastian & Dawo, Fabian & Rieger, Florian & Schuster, Andreas & Aumann, Richard & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental and numerical investigation of direct liquid injection into an ORC twin-screw expander," Energy, Elsevier, vol. 178(C), pages 867-878.
    6. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    7. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
    8. Wang, Zhiqi & Zhao, Yabin & Xia, Xiaoxia & Pan, Huihui & Zhang, Sifeng & Liu, Zhipeng, 2023. "Experimental evaluation of organic Rankine cycle using zeotropic mixture under different operation conditions," Energy, Elsevier, vol. 264(C).
    9. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    10. Shahbaz, Muhammad & Topcu, Betül Altay & Sarıgül, Sevgi Sümerli & Vo, Xuan Vinh, 2021. "The effect of financial development on renewable energy demand: The case of developing countries," Renewable Energy, Elsevier, vol. 178(C), pages 1370-1380.
    11. Ghavami, Morteza & Gholizadeh, Mohammad & Deymi-Dashtebayaz, Mahdi, 2023. "Parametric study and optimization analysis of a multi-generation system using waste heat in natural gas refinery- an energy and exergoeconomic analysis," Energy, Elsevier, vol. 272(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yong-qiang & Wang, Yu & Yao, Lin & Xu, Jing-wei & Zhang, Fei-yang & He, Zhi-xia & Wang, Qian & Ma, Jian-long, 2023. "Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids," Energy, Elsevier, vol. 263(PA).
    2. Xia, Xiaoxia & Yang, Chengwu & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Wu, Jinhao, 2024. "Multi-objective optimization of the dual-pressure organic Rankine cycle system based on the orthogonal design method under different external conditions," Energy, Elsevier, vol. 296(C).
    3. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    4. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    5. Lei, Biao & Yu, Hai-bin & Li, Guo-qiang & Wu, Yu-Ting & Wang, Wei, 2022. "Thermodynamic investigations on internal generator cooling for hermetic expanders in Organic Rankine Cycles," Energy, Elsevier, vol. 251(C).
    6. Marius Dalian Doran & Maria Magdalena Poenaru & Alexandra Lucia Zaharia & Sorana Vătavu & Oana Ramona Lobonț, 2022. "Fiscal Policy, Growth, Financial Development and Renewable Energy in Romania: An Autoregressive Distributed Lag Model with Evidence for Growth Hypothesis," Energies, MDPI, vol. 16(1), pages 1-18, December.
    7. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    8. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    9. Skare, Marinko & Gavurova, Beata & Sinkovic, Dean, 2023. "Regional aspects of financial development and renewable energy: A cross-sectional study in 214 countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1142-1157.
    10. Mukhtarov, Shahriyar & Yüksel, Serhat & Dinçer, Hasan, 2022. "The impact of financial development on renewable energy consumption: Evidence from Turkey," Renewable Energy, Elsevier, vol. 187(C), pages 169-176.
    11. Elvis D. Achuo & Pilag B.C. Kakeu & Simplice A. Asongu, 2023. "Financial development, human capital and energy transition: A global comparative analysis," Working Papers 23/005, European Xtramile Centre of African Studies (EXCAS).
    12. Simplice A. Asongu & Joel Hinaunye Eita, 2023. "Promoting renewable energy consumption in Sub-Saharan Africa: how capital flight crowds-out the favorable effect of foreign aid," Working Papers of the African Governance and Development Institute. 23/048, African Governance and Development Institute..
    13. Hwang, Young Kyu & Sánchez Díez, Ángeles, 2024. "Renewable energy transition and green growth nexus in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    14. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    15. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).
    16. Ouyang, Tiancheng & Wang, Zhiping & Wang, Geng & Zhao, Zhongkai & Xie, Shutao & Li, Xiaoqing, 2021. "Advanced thermo-economic scheme and multi-objective optimization for exploiting the waste heat potentiality of marine natural gas engine," Energy, Elsevier, vol. 236(C).
    17. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    18. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2022. "Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Fotio, Herve Kaffo & Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Financing renewable energy generation in SSA: Does financial integration matter?," Renewable Energy, Elsevier, vol. 201(P2), pages 47-59.
    20. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.