IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222013421.html
   My bibliography  Save this article

A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion

Author

Listed:
  • Huang, Zhian
  • Song, Donghong
  • Hu, Xiangming
  • Zhang, Yinghua
  • Gao, Yukun
  • Quan, Sainan
  • Yin, Yichao
  • Yang, Yifu
  • Luo, Hongsen
  • Ji, Yucheng

Abstract

In this study, we developed a modified antioxidant-type inhibitor (MAT-inhibitor) to address the disadvantages of the inhibitors that are currently used in coal mines, namely single effect, poor thermal stability, and low versatility. Sodium acrylate, tert-butyl hydroquinone (TBHQ), and montmorillonite were used as raw materials. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were adopted to analyze the inhibition performance and mechanism of the MAT-inhibitor. Research indicates that the MAT-inhibitor is able to fully cover the coal surface, and has strong water absorption qualities. TBHQ in the inhibitor significantly reduces the content of methyl (-CH3), methylene (–CH2–), hydroxyl (-OH), and carboxyl groups (-COOH) in the coal radical chain reaction. In the meantime, it increases the stable ether bond content (C–O–C). After treatment with the MAT-inhibitor, the dry cracking temperature of the coal sample increased by 52.8 °C, and the maximum thermal mass loss rate decreased by 0.84%/min. This proved that the inhibitor has superior thermal stability and high inhibition performance. Therefore, regardless of the physical, chemical, and thermal stability aspects, the MAT-inhibitor can be used to control the spontaneous combustion of coal.

Suggested Citation

  • Huang, Zhian & Song, Donghong & Hu, Xiangming & Zhang, Yinghua & Gao, Yukun & Quan, Sainan & Yin, Yichao & Yang, Yifu & Luo, Hongsen & Ji, Yucheng, 2022. "A novel nano-modified inhibitor of tert-butyl hydroquinone/sodium polyacrylate for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222013421
    DOI: 10.1016/j.energy.2022.124439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    2. Lü, Hui-Fei & Xiao, Yang & Deng, Jun & Li, Da-jiang & Yin, Lan & Shu, Chi-Min, 2019. "Inhibiting effects of 1-butyl-3-methyl imidazole tetrafluoroborate on coal spontaneous combustion under different oxygen concentrations," Energy, Elsevier, vol. 186(C).
    3. Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    2. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    3. Liang, Yuntao & Guo, Baolong & Qi, Guansheng & Song, Shuanglin & Tian, Fuchao & Cui, Xinfeng, 2024. "Method of hydrothermal treatment for coal spontaneous combustion inhibition and its application," Energy, Elsevier, vol. 293(C).
    4. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    5. Huang, Jiliang & Tan, Bo & Gao, Liyang & Fan, Long & Shao, Zhuangzhuang & Wang, Haiyan & Qi, Qingjie, 2024. "Study on the evolution characteristics of molecular surface active sites of low-rank coal in low-temperature oxidation stage," Energy, Elsevier, vol. 294(C).
    6. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    2. Hou, Ya-nan & Nie, Bai-sheng & Zhang, Zhe-hao & Kong, Fan-bei & Zhao, Dan & Wang, Xiao-tong & Wang, Cai-ping, 2022. "Inhibitory effect of green antioxidants acting on surface groups and structure on lignite," Energy, Elsevier, vol. 257(C).
    3. Xue, Di & Hu, Xiangming & Cheng, Weimin & Yu, Xiaoxiao & Wu, Mingyue & Zhao, Yanyun & Lu, Yi & Pan, Rongkun & Niu, Huiyong & Hu, Shengyong, 2020. "Development of a novel composite inhibitor modified with proanthocyanidins and mixed with ammonium polyphosphate," Energy, Elsevier, vol. 213(C).
    4. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    5. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    6. Lu, Wei & Gao, Ao & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong, 2023. "Stable and highly efficient HMDS terminated m-Cresol inhibitor for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 282(C).
    7. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    9. Xue, Di & Hu, Xiangming & Sun, Gongzheng & Wang, Kai & Liu, Tongyu & Wang, Jiqiang & Wang, Fusheng, 2023. "A study on a Janus-type composite solidified foam and its characteristics for preventing and controlling spontaneous combustion of coal," Energy, Elsevier, vol. 275(C).
    10. Gao, Fei & Bai, Qihui & Jia, Zhe & Zhang, Xun & Li, Yingdi, 2024. "Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal," Energy, Elsevier, vol. 293(C).
    11. Pan, Rongkun & Li, Cong & Chao, Jiangkun & Hu, Daimin & Jia, Hailin, 2023. "Thermal properties and microstructural evolution of coal spontaneous combustion," Energy, Elsevier, vol. 262(PA).
    12. Liu, Zengkai & Ma, Qiang & Cai, Baoping & Shi, Xuewei & Zheng, Chao & Liu, Yonghong, 2022. "Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Wang, Hui & Xie, Jingna & Xie, Jun & Jiang, Hehe & Wen, Yongzan & Huang, Wanpeng & Wang, Gang & Jiang, Bingyou & Zhang, Chao, 2022. "Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite," Energy, Elsevier, vol. 239(PB).
    14. Xiuyu Wu & Pengkai Sun, 2024. "Dynamic Analysis and Temporal Governance of Safety Risks: Evidence from Underground Construction Accident Reports," Sustainability, MDPI, vol. 16(19), pages 1-25, September.
    15. Yutao, Zhang & Yuanbo, Zhang & Yaqing, Li & Xueqiang, Shi & Yujie, Zhang, 2021. "Heat effects and kinetics of coal spontaneous combustion at various oxygen contents," Energy, Elsevier, vol. 234(C).
    16. Guo, Shengli & Yan, Zhuo & Yuan, Shujie & Weile Geng,, 2021. "Inhibitory effect and mechanism of l-ascorbic acid combined with tea polyphenols on coal spontaneous combustion," Energy, Elsevier, vol. 229(C).
    17. Song, Jiajia & Deng, Jun & Zhao, Jingyu & Zhang, Yanni & Wang, Caiping & Shu, Chi-Min, 2021. "Critical particle size analysis of gas emission under high-temperature oxidation of weathered coal," Energy, Elsevier, vol. 214(C).
    18. Xue, Gang & Liu, Shifeng & Ren, Long & Gong, Daqing, 2024. "Risk assessment of utility tunnels through risk interaction-based deep learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Fan, Xin-li & Ma, Li & Sheng, You-jie & Liu, Xi-xi & Wei, Gao-ming & Liu, Shang-ming, 2023. "Experimental investigation on the characteristics of XG/GG/HPAM gel foam and prevention of coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
    20. Lv, Hongpeng & Li, Bei & Deng, Jun & Ye, Lili & Gao, Wei & Shu, Chi-Min & Bi, Mingshu, 2021. "A novel methodology for evaluating the inhibitory effect of chloride salts on the ignition risk of coal spontaneous combustion," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222013421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.