IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i11p1994-d1271440.html
   My bibliography  Save this article

Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China

Author

Listed:
  • Zhanjie Feng

    (School of Environment Science & Spatial Informatics, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China)

  • Zhenqi Hu

    (School of Environment Science & Spatial Informatics, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China
    Institute of Land Reclamation & Ecological Restoration, China University of Mining & Technology (Beijing), Beijing 100083, China)

  • Xi Zhang

    (School of Environment Science & Spatial Informatics, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China)

  • Yuhang Zhang

    (School of Public Policy & Management, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China)

  • Ruihao Cui

    (School of Environment Science & Spatial Informatics, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China)

  • Li Lu

    (School of Environment Science & Spatial Informatics, China University of Mining & Technology, Daxue Road 1#, Xuzhou 221116, China)

Abstract

In the coal-grain composite area (CGCA) of eastern China with a high groundwater table (HGT), underground coal mining subsidence has caused extensive submergence of farmland, posing a significant threat to regional food security. Currently, land reclamation techniques in mining subsidence areas primarily focus on post-mining reclamation (PMR) of stable subsidence land with a low reclamation rate. This study investigated the application of concurrent mining and reclamation (CMR) technology for unstable subsidence land in a representative HGT mining area, namely the Guqiao Coal Mine in the Huainan Coalfield. Firstly, mining subsidence prediction and geographic information technology were employed to simulate the spatio-temporal evolution of dynamic mining subsidence, taking into consideration the mining plan. Subsequently, phased reclamation parameters were quantitatively designed by integrating the dynamic mining subsidence and surface reclamation measures. Lastly, scenario simulations were conducted to discuss the effectiveness of CMR in comparison with non-reclamation (NR) and PMR. Additionally, reclamation and ecological restoration strategies for coal mining subsidence areas with comprehensive governance modes were proposed. The findings indicated that mining activities have led to a reduction in both the quantity and quality of original farmland, with 70% of the farmland submerged and rendered uncultivable. In contrast to PMR, which achieved a reclamation rate of 29%, CMR can significantly increase the farmland reclamation rate to 69% while also prolonging the service life of farmland. This study provides theoretical support and technical references for promoting sustainable mining practices, protecting farmland, and facilitating the high-quality development of coal resource-based cities.

Suggested Citation

  • Zhanjie Feng & Zhenqi Hu & Xi Zhang & Yuhang Zhang & Ruihao Cui & Li Lu, 2023. "Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China," Land, MDPI, vol. 12(11), pages 1-15, October.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:1994-:d:1271440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/11/1994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/11/1994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Zhenqi & Yang, Guanghua & Xiao, Wu & Li, Jing & Yang, Yaoqi & Yu, Yang, 2014. "Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 1-8.
    2. Zhu, Yuanyuan & Wang, Ziwei & Zhu, Xiaohua, 2023. "New reflections on food security and land use strategies based on the evolution of Chinese dietary patterns," Land Use Policy, Elsevier, vol. 126(C).
    3. Jan Blachowski & Anna Kopeć & Wojciech Milczarek & Karolina Owczarz, 2019. "Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    4. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    2. Erhu Bai & Xueyi Li & Wenbing Guo & Yi Tan & Mingjie Guo & Peng Wen & Zhibao Ma, 2022. "Characteristics and Formation Mechanism of Surface Residual Deformation above Longwall Abandoned Goaf," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    3. Lili Du & Yunbing Hou & Shuheng Zhong & Kai Qu, 2023. "Identification of Priority Areas for Ecological Restoration in Coal Mining Areas with a High Groundwater Table Based on Ecological Security Pattern and Ecological Vulnerability," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    4. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    5. Li, Gensheng & Hu, Zhenqi & Li, Pengyu & Yuan, Dongzhu & Wang, Wenjuan & Yang, Kun, 2021. "The optimal framework and model to balance underground coal mining and cropland protection in Jining, eastern China," Resources Policy, Elsevier, vol. 74(C).
    6. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    7. Siyun Chen & Chuhai Zhu & Xiao Ouyang & Yong Han, 2023. "Research on the Supervision and Implementation System of Territorial Space Planning from the Perspective of Resilience," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    8. Lu Zhang & Bing Kuang & Bohan Yang, 2023. "Sustainable Land Use and Management," Sustainability, MDPI, vol. 15(23), pages 1-4, November.
    9. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    10. Xiao, Wu & Cheng, Andi & Li, Shuai & Jiang, Xiaobin & Ruan, Xuehua & He, Gaohong, 2021. "A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-Ⅱ," Energy, Elsevier, vol. 232(C).
    11. Zhu, Yao & Wang, Qinhui & Li, Kaikun & Cen, Jianmeng & Fang, Mengxiang & Ying, Chengdong, 2022. "Study on pressurized isothermal pyrolysis characteristics of low-rank coal in a pressurized micro-fluidized bed reaction analyzer," Energy, Elsevier, vol. 240(C).
    12. Dongsen Li & Kang Qian & Ciwei Gao & Yiyue Xu & Qiang Xing & Zhangfan Wang, 2024. "Research on Electric Hydrogen Hybrid Storage Operation Strategy for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 17(20), pages 1-15, October.
    13. Xiling Zhang & Xiaoqian Liu & Zeyu Zhang & Ruiyi Tang & Ting Zhang & Jian Yao, 2024. "The Synergistic Effect of the Carbon Emission Trading Scheme on Pollution and Carbon Reduction in China’s Power Industry," Sustainability, MDPI, vol. 16(19), pages 1-17, October.
    14. Artur Guzy & Agnieszka A. Malinowska, 2020. "Assessment of the Impact of the Spatial Extent of Land Subsidence and Aquifer System Drainage Induced by Underground Mining," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    15. Wang Gao & Jiajia Wei & Shixiong Yang, 2023. "The Asymmetric Effects of Extreme Climate Risk Perception on Coal Futures Return Dynamics: Evidence from Nonparametric Causality-In-Quantiles Tests," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    16. Yang, Shuhui & Cui, Xuefeng, 2023. "Large-scale production: A possible way to the balance between feed grain security and meat security in China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 1-1.
    17. Liu, Baoliu & Cifuentes-Faura, Javier & Ding, Chante Jian & Liu, Xiaoqian, 2023. "Toward carbon neutrality: How will environmental regulatory policies affect corporate green innovation?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1006-1020.
    18. Ting Du & Chao Li & Zhaolin Wang, 2023. "Spatial Differentiation and Influencing Mechanisms of Farmland Transfer Rents in Mountainous Areas: Evidence from Chongqing and Its Surrounding Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
    19. Xing, Zhizhong & Zhao, Shuanfeng & Guo, Wei & Meng, Fanyuan & Guo, Xiaojun & Wang, Shenquan & He, Haitao, 2023. "Coal resources under carbon peak: Segmentation of massive laser point clouds for coal mining in underground dusty environments using integrated graph deep learning model," Energy, Elsevier, vol. 285(C).
    20. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:1994-:d:1271440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.