IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011022.html
   My bibliography  Save this article

Dynamic role of dopant and graphene on BiVO4 photoanode for enhanced photoelectrochemical hydrogen production

Author

Listed:
  • Tamboli, Mohaseen S.
  • Patil, Santosh S.
  • Lee, Dong-Kyu
  • Praveen, C.S.
  • Tamboli, Asiya M.
  • Sim, Uk
  • Lee, Kiyoung
  • Gu, Geun Ho
  • Park, Chinho

Abstract

The development of an efficient and stable electrode remains an attractive challenge for photoelectrochemical (PEC) water splitting to generate cheaper and green hydrogen (H2). Herein, we have fabricated a novel multicomponent molybdenum (Mo) doped bismuth vanadate/graphene (Mo-doped BiVO4@graphene) photoanode by simple spin coating technique followed by an annealing process. Precise control over Mo and graphene doping concentration (GR3/BVO:Mo-0.5) was attained, enabling excellent photocurrent density (4-fold increase as compared to BVO) with an enhanced rate of H2 production. This is attributed to the synergistic effect between molybdenum and graphene enhancing charge carrier density and suppressing the recombination rate of photo-generated electrons and holes. Our DFT studies indicate a reduction in the band gap value after doping pure BVO with Mo. In addition, we observed that the potential determining step of the oxygen evolution reaction (OER) is the electrochemical adsorption of hydroxyl radical (H2O(l) + * → HO* + H+(aq) + e−), which is reduced by ∼0.8 eV after doping with Mo. This study reports on the unique design of a Mo-doped BiVO4@graphene hybrid electrode, which can be used as a superior electrode for green hydrogen generation under sunlight.

Suggested Citation

  • Tamboli, Mohaseen S. & Patil, Santosh S. & Lee, Dong-Kyu & Praveen, C.S. & Tamboli, Asiya M. & Sim, Uk & Lee, Kiyoung & Gu, Geun Ho & Park, Chinho, 2024. "Dynamic role of dopant and graphene on BiVO4 photoanode for enhanced photoelectrochemical hydrogen production," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011022
    DOI: 10.1016/j.energy.2024.131329
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rengui Li & Fuxiang Zhang & Donge Wang & Jingxiu Yang & Mingrun Li & Jian Zhu & Xin Zhou & Hongxian Han & Can Li, 2013. "Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    2. Xinjian Shi & Il Yong Choi & Kan Zhang & Jeong Kwon & Dong Yeong Kim & Ja Kyung Lee & Sang Ho Oh & Jong Kyu Kim & Jong Hyeok Park, 2014. "Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    3. Fatwa F. Abdi & Lihao Han & Arno H. M. Smets & Miro Zeman & Bernard Dam & Roel van de Krol, 2013. "Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    4. Katherine T. Fountaine & Hans Joachim Lewerenz & Harry A. Atwater, 2016. "Efficiency limits for photoelectrochemical water-splitting," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    5. Mian, Shahid Hassan & Nazir, Muhammad Saqib & Ahmad, Iftikhar & Khan, Safdar Abbas, 2023. "Optimized nonlinear controller for fuel cell, supercapacitor, battery, hybrid photoelectrochemical and photovoltaic cells based hybrid electric vehicles," Energy, Elsevier, vol. 283(C).
    6. Qureshy, Ali M.M.I. & Dincer, Ibrahim, 2021. "Multi-component modeling and simulation of a new photoelectrochemical reactor design for clean hydrogen production," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tayebi, Meysam & Lee, Byeong-Kyu, 2019. "Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 332-343.
    2. Tian, Tian & Jiang, Guiyuan & Li, Yunlu & Xiang, Wenjing & Fu, Wensheng, 2022. "Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation," Renewable Energy, Elsevier, vol. 199(C), pages 132-139.
    3. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    4. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).
    6. Hamdani, I.R. & Bhaskarwar, A.N., 2021. "Recent progress in material selection and device designs for photoelectrochemical water-splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
    8. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Dhandole, Love Kumar & Anushkkaran, Periyasamy & Hwang, Jun Beom & Chae, Weon-Sik & Kumar, Manish & Lee, Hyun-Hwi & Choi, Sun Hee & Jang, Jum Suk & Lee, Jae Sung, 2022. "Microwave-assisted metal-ion attachment for ex-situ zirconium doping into hematite for enhanced photoelectrochemical water splitting," Renewable Energy, Elsevier, vol. 189(C), pages 694-703.
    10. Pavlos Psathas & Maria Solakidou & Asterios Mantzanis & Yiannis Deligiannakis, 2021. "Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi 2 Fe 4 O 9 and Perovskite-BiFeO 3 as Highly Efficient Photocatalysts for O 2 Production from H 2 O Splitting," Energies, MDPI, vol. 14(17), pages 1-16, August.
    11. V. P. Singh & Mirgender Kumar & Moolchand Sharma & Deepika Mishra & Kwang-Su Seong & Si-Hyun Park & Rahul Vaish, 2021. "Synthesis of BiF 3 and BiF 3 -Added Plaster of Paris Composites for Photocatalytic Applications," Energies, MDPI, vol. 14(16), pages 1-14, August.
    12. Fei He & Seunghyun Weon & Woojung Jeon & Myoung Won Chung & Wonyong Choi, 2021. "Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Simon Caron & Marc Röger & Michael Wullenkord, 2020. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices," Energies, MDPI, vol. 13(19), pages 1-31, October.
    14. Chao Zhen & Xiangtao Chen & Ruotian Chen & Fengtao Fan & Xiaoxiang Xu & Yuyang Kang & Jingdong Guo & Lianzhou Wang & Gao Qing (Max) Lu & Kazunari Domen & Hui-Ming Cheng & Gang Liu, 2024. "Liquid metal-embraced photoactive films for artificial photosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Fang Li & Xiaoyang Yue & Yulong Liao & Liang Qiao & Kangle Lv & Quanjun Xiang, 2023. "Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Tian Liu & Zhenhua Pan & Kosaku Kato & Junie Jhon M. Vequizo & Rito Yanagi & Xiaoshan Zheng & Weilai Yu & Akira Yamakata & Baoliang Chen & Shu Hu & Kenji Katayama & Chiheng Chu, 2022. "A general interfacial-energetics-tuning strategy for enhanced artificial photosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Guangri Jia & Fusai Sun & Tao Zhou & Ying Wang & Xiaoqiang Cui & Zhengxiao Guo & Fengtao Fan & Jimmy C. Yu, 2024. "Charge redistribution of a spatially differentiated ferroelectric Bi4Ti3O12 single crystal for photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Tian Liu & Zhenhua Pan & Junie Jhon M. Vequizo & Kosaku Kato & Binbin Wu & Akira Yamakata & Kenji Katayama & Baoliang Chen & Chiheng Chu & Kazunari Domen, 2022. "Overall photosynthesis of H2O2 by an inorganic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Nong, Guangzai & Li, Ming & Chen, Yiyi & Zhou, Zongwen & Wang, Shuangfei, 2015. "Simulation of energy conversion in a plant of photocatalysts water splitting for hydrogen fuel," Energy, Elsevier, vol. 81(C), pages 471-476.
    20. Zhishan Luo & Xiaoyuan Ye & Shijia Zhang & Sikang Xue & Can Yang & Yidong Hou & Wandong Xing & Rong Yu & Jie Sun & Zhiyang Yu & Xinchen Wang, 2022. "Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.