IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018613.html
   My bibliography  Save this article

Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments

Author

Listed:
  • Dai, Xuguang
  • Wei, Chongtao
  • Wang, Meng
  • Zhang, Junjian
  • Wang, Xiaoqi
  • Shi, Xuan
  • Vandeginste, Veerle

Abstract

Clay minerals have the potential to capture anthropogenic CO2 emissions permanently and safely. Understanding the kinetics of cation leaching and carbonate formation, as well as changes in clay structure, has resource and environmental implications. However, metadynamics mechanism and relevant structural changes in representative clay minerals exposed to supercritical carbon dioxide (scCO2) are rarely studied in current research. In this work, ReaxFF molecular dynamics simulation in combination with scCO2‒H2O‒illite experiments at 10 MPa and 333 K were carried out to investigate the mechanisms of mineralization and structure alteration under geological conditions. The results show that interlayer K+ cations were leached out due to surface non-bridging oxygen protonation, subsequently bonding with HCO3− and forming K2CO3 molecules at the surface. Upon analyzing the chemical and structural results of experiments, carbonate precipitation and accumulation reduce storage space and modify the composition of illite, but the octahedral and tetrahedral sheets of the illite are structurally stable. The efficiency of mineralization is typically dominated by the exposed surface, where sufficient cations can be provided to enhance interactions at the illite/liquid interface. In comparison to a decrease in plane porosity of 27.3%, the mineralization degree with values between 15.22% and 33.12% is comparable and acceptable. These findings present a non-structural mechanism in clay minerals that might have critical influence on CO2 geo-sequestration in shale gas reservoirs.

Suggested Citation

  • Dai, Xuguang & Wei, Chongtao & Wang, Meng & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Understanding CO2 mineralization and associated storage space changes in illite using molecular dynamics simulation and experiments," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018613
    DOI: 10.1016/j.energy.2023.128467
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128467?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    2. Shu-Yuan Pan & Yi-Hung Chen & Liang-Shih Fan & Hyunook Kim & Xiang Gao & Tung-Chai Ling & Pen-Chi Chiang & Si-Lu Pei & Guowei Gu, 2020. "CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction," Nature Sustainability, Nature, vol. 3(5), pages 399-405, May.
    3. Yang, W. & Zaoui, A., 2016. "Capture and sequestration of CO2 in the interlayer space of hydrated calcium Montmorillonite clay under various geological burial depth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 416-425.
    4. Mark A. Torres & A. Joshua West & Gaojun Li, 2014. "Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales," Nature, Nature, vol. 507(7492), pages 346-349, March.
    5. Hong, Dikun & Li, Ping & Si, Ting & Guo, Xin, 2021. "ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene," Energy, Elsevier, vol. 218(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yubo & Yang, Zhao & Lv, Zijian & Zhang, Yong & Li, Jie & Fei, Teng, 2023. "Combustion mechanism and product characteristics of 2,3,3,3-tetrafluoropropene as an environmentally friendly working fluid for organic Rankine cycle," Energy, Elsevier, vol. 268(C).
    2. Xiao Sun & Qi Cheng & Jiren Tang & Xing Guo & Yunzhong Jia & Jingfu Mu & Guilin Zhao & Yalu Liu, 2023. "Assessment of the CO 2 Geological Storage Potential of Yanchang Shale Gas Formation (Chang7 Member) Considering the Capillary Sealing Capability of Caprock," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    3. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Ma, Liyang & Zhang, Lan & Wang, Deming & Xin, Haihui & Ma, Qiulin, 2023. "Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: A reactive force field molecular dynamics simulation," Energy, Elsevier, vol. 283(C).
    5. Chen, Yubo & Yang, Zhao & Zhang, Yong & He, Hongxia & Li, Jie, 2023. "Combustion and interaction mechanism of 2,3,3,3-tetrafluoropropene/1,1,1,2-tetrafluoroethane as an environmentally friendly mixed working fluid," Energy, Elsevier, vol. 284(C).
    6. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    7. Guo, Guanlun & Fan, Kang & Guo, Ziqing & Guo, Wei, 2023. "Pyrolysis behavior of automotive polypropylene plastics: ReaxFF molecular dynamics study on the co-pyrolysis of polypropylene and EPDM/POE," Energy, Elsevier, vol. 280(C).
    8. K. E. Clark & R. F. Stallard & S. F. Murphy & M. A. Scholl & G. González & A. F. Plante & W. H. McDowell, 2022. "Extreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    10. Joan P. Casas-Ruiz & Pascal Bodmer & Kelly Ann Bona & David Butman & Mathilde Couturier & Erik J. S. Emilson & Kerri Finlay & Hélène Genet & Daniel Hayes & Jan Karlsson & David Paré & Changhui Peng & , 2023. "Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Pang, Yunhui & Zhu, Xiaoli & Li, Ning & Wang, Zhenbo, 2023. "Investigation on reaction mechanism for CO2 gasification of softwood lignin by ReaxFF MD method," Energy, Elsevier, vol. 267(C).
    12. Yu, Wei & Liu, Chao & Tan, Luxi & Li, Qibin & Xin, Liyong & Wang, Shukun, 2023. "Thermal stability and thermal decomposition mechanism of octamethyltrisiloxane (MDM): Combined experiment, ReaxFF-MD and DFT study," Energy, Elsevier, vol. 284(C).
    13. Meng, Junqing & Lyu, Chunhui & Wang, Lijuan & Wang, Jie & Nie, Baisheng & Lyu, Yingpei & Cao, Zihao, 2023. "Effect of cyclic load on mechanical properties and failure mechanisms of different rank coals," Energy, Elsevier, vol. 278(PB).
    14. Yanpu Zhao & Jan R. Wijbrans & Hua Wang & Pieter Z. Vroon & Jianghao Ma & Yanqiong Zhao, 2023. "Chemical Weathering and CO 2 Consumption Inferred from Riverine Water Chemistry in the Xi River Drainage, South China," IJERPH, MDPI, vol. 20(2), pages 1-26, January.
    15. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    16. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Bai, Zhongze & Jiang, Xi Zhuo & Luo, Kai H., 2022. "Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study," Energy, Elsevier, vol. 238(PB).
    18. He, Minyu & Teng, Liumei & Gao, Yuxiang & Rohani, Sohrab & Ren, Shan & Li, Jiangling & Yang, Jian & Liu, Qingcai & Liu, Weizao, 2022. "Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization," Energy, Elsevier, vol. 248(C).
    19. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    20. Xu, Tong & Wang, Chunbo & Hong, Dikun & Li, Song & Yue, Shuang, 2023. "The synergistic effect during co-combustion of municipal sludge and coal: Experimental and ReaxFF molecular dynamic study," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.