IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023848.html
   My bibliography  Save this article

Integrated optimal control of distributed in-wheel motor drive electric vehicle in consideration of the stability and economy

Author

Listed:
  • Xu, Tao
  • Zhao, Youqun
  • Deng, Huifan
  • Guo, Shuo
  • Li, Danyang
  • Lin, Fen

Abstract

From the perspective of handling stability and economy, this paper brings forward an integrated optimal control scheme of distributed in-wheel motor drive electric vehicles (IWMDEV). A linear quadratic regulator (LQR) controller is presented according to nominal model and ideal motions firstly. To tackle the uncertain parameters and random disturbance, a novel robust optimal (RO) control strategy is further proposed to design the top level controller by employing the combination of optimal control and high order sliding mode control. By virtue of the integral and terminal sliding mode surface, the resulting robust optimal control method can not only achieve better performance, but also converge in finite time without chattering phenomenon. As for the bottom level controller, an optimal algorithm is developed to determine the weights for each term in objective function of torque allocation dynamically and coordinate the relationship between driving safety and energy-saving performance timely. Finally, joint simulations are carried out. In comparison with LQR control strategy, the results demonstrate that the proposed control scheme could ensure the robustness and effectiveness in the presence of parametric perturbation and external disturbance. Moreover, the torque allocation algorithm, which considers both handling stability and energy consumption, proves to be an effectual approach.

Suggested Citation

  • Xu, Tao & Zhao, Youqun & Deng, Huifan & Guo, Shuo & Li, Danyang & Lin, Fen, 2023. "Integrated optimal control of distributed in-wheel motor drive electric vehicle in consideration of the stability and economy," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023848
    DOI: 10.1016/j.energy.2023.128990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    2. Deng, Huifan & Zhao, Youqun & Feng, Shilin & Wang, Qiuwei & Zhang, Chenxi & Lin, Fen, 2021. "Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Binbin & Li, Bo & Xing, Jilei & Yu, Xiao & Xie, Mengxue & Hu, Zihao, 2024. "Analysis of the influence of electric flywheel and electromechanical flywheel on electric vehicle economy," Energy, Elsevier, vol. 295(C).
    2. Jie Hu & Feiyue Rong & Pei Zhang & Fuwu Yan, 2024. "Sideslip Angle Estimation for Distributed Drive Electric Vehicles Based on Robust Unscented Particle Filter," Mathematics, MDPI, vol. 12(9), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Hongqian & Ai, Qiang & Zhao, Wenqiang & Zhang, Youtong, 2022. "Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency," Energy, Elsevier, vol. 239(PA).
    2. Sofiane Bacha & Ramzi Saadi & Mohamed Yacine Ayad & Mohamed Sahraoui & Khaled Laadjal & Antonio J. Marques Cardoso, 2023. "Autonomous Electric-Vehicle Control Using Speed Planning Algorithm and Back-Stepping Approach," Energies, MDPI, vol. 16(5), pages 1-26, March.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
    5. Feiyu Hou & Fei Yao & Zheng Li, 2022. "A Torque-Compensated Fault-Tolerant Control Method for Electric Vehicle Traction Motor with Short-Circuit Fault," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    6. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    7. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    8. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    9. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    10. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Theo Lieven & Beatrice Hügler, 2021. "Did Electric Vehicle Sales Skyrocket Due to Increased Environmental Awareness While Total Vehicle Sales Declined during COVID-19?," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    12. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    13. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    14. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    15. Tingting Wang & Xin Liu & Dongchen Qin & Yuechen Duan, 2022. "Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior," Energies, MDPI, vol. 15(23), pages 1-22, November.
    16. Ataur Rahman & Kyaw Myo Aung & Sany Ihsan & Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Mohannad T. Aljarrah, 2023. "Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles," Energies, MDPI, vol. 16(6), pages 1-23, March.
    17. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    18. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    19. Xingxing Wang & Yujie Zhang & Hongjun Ni & Shuaishuai Lv & Fubao Zhang & Yu Zhu & Yinnan Yuan & Yelin Deng, 2022. "Influence of Different Ambient Temperatures on the Discharge Performance of Square Ternary Lithium-Ion Batteries," Energies, MDPI, vol. 15(15), pages 1-22, July.
    20. Piotr Bielaczyc & Rafal Sala & Tomasz Meinicke, 2021. "Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain," Energies, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.