Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128636
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
- Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
- Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
- Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
- Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
- Min, Yunran & Chen, Yi & Yang, Hongxing, 2019. "A statistical modeling approach on the performance prediction of indirect evaporative cooling energy recovery systems," Applied Energy, Elsevier, vol. 255(C).
- Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
- Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Wang, Jue & Lu, Jun & Li, Wuyan & Zeng, Cheng & Shi, Fenghao, 2022. "Numerical study on performance of a hybrid indirect evaporative cooling heat recovery heat pump ventilator as applied in different climatic regions of China," Energy, Elsevier, vol. 239(PE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Xiaochen & Shi, Wenchao & Lu, Lin & Yang, Hongxing, 2024. "Performance assessment and optimization of water spray strategy for indirect evaporative cooler based on artificial neural network modeling and genetic algorithm," Applied Energy, Elsevier, vol. 368(C).
- Sulaiman, Mohammed A. & Adham, Ahmed M. & Hasan, Hasan F. & Benim, Ali C. & Anjal, Hassan A., 2024. "Performance analysis of novel dew point evaporative cooler with shell and tube design through different air-water flow configurations," Energy, Elsevier, vol. 289(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
- Ma, Xiaochen & Shi, Wenchao & Lu, Lin & Yang, Hongxing, 2024. "Performance assessment and optimization of water spray strategy for indirect evaporative cooler based on artificial neural network modeling and genetic algorithm," Applied Energy, Elsevier, vol. 368(C).
- Shi, Wenchao & Min, Yunran & Ma, Xiaochen & Chen, Yi & Yang, Hongxing, 2022. "Dynamic performance evaluation of porous indirect evaporative cooling system with intermittent spraying strategies," Applied Energy, Elsevier, vol. 311(C).
- Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effect of random fiber distribution on the performance of counter-flow hollow fiber membrane-based direct evaporative coolers," Energy, Elsevier, vol. 282(C).
- Ma, Xiaochen & Shi, Wenchao & Yang, Hongxing, 2022. "Study on water spraying distribution to improve the energy recovery performance of indirect evaporative coolers with nozzle arrangement optimization," Applied Energy, Elsevier, vol. 318(C).
- Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
- Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
- Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
- Luo, Jielin & Shen, Yongting & Yang, Hongxing, 2024. "Investigations on an integrated air-conditioning system using technologies of desiccant dehumidification, indirect evaporative cooling and CO2 capture," Applied Energy, Elsevier, vol. 369(C).
- Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
- Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
- Liang, Chenjiyu & Li, Xianting & Zheng, Gonghang, 2022. "Optimizing air conditioning systems by considering the grades of sensible and latent heat loads," Applied Energy, Elsevier, vol. 322(C).
- Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
- Zhuang, Chaoqun & Gao, Yafeng & Zhao, Yingru & Levinson, Ronnen & Heiselberg, Per & Wang, Zhiqiang & Guo, Rui, 2021. "Potential benefits and optimization of cool-coated office buildings: A case study in Chongqing, China," Energy, Elsevier, vol. 226(C).
- Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
- Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
- Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
- Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
More about this item
Keywords
Air conditioning; Indirect evaporative cooling; Response surface methodology; Performance prediction; Optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020303. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.