IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022144.html
   My bibliography  Save this article

Troubled waters: Estimating the role of the power sector in future water scarcity crises

Author

Listed:
  • Lohrmann, Alena
  • Farfan, Javier
  • Lohrmann, Christoph
  • Kölbel, Julian Fritz
  • Pettersson, Frank

Abstract

One of the effects of climate change is on freshwater availability. The widespread drought in the summer of 2022 impeded access to freshwater, putting into question the reliability of the current and future energy generation and evoking concerns of competition of different industries for water. In response to climate change, energy transition scenarios represent pathways to a more sustainable energy system, but often overlook the water footprint of the energy sector. Therefore, this study uses machine learning for the identification of thermal power plants’ cooling systems to estimate the water footprint of the current and future energy system using six energy transition scenarios. It is built on published data on thermal power plants announced globally, with a total capacity of 3277 GW, which are planned to be installed between 2020 and 2050. The results demonstrate that the water consumption of the global power sector may increase by up to 50% until 2050, compared to the 2020 level. The findings also emphasize that every new thermal power plant installed in the future will be associated with a higher average water demand per unit of generated electricity. Hence, the rising stress on water systems becomes another argument supporting the transition towards renewables.

Suggested Citation

  • Lohrmann, Alena & Farfan, Javier & Lohrmann, Christoph & Kölbel, Julian Fritz & Pettersson, Frank, 2023. "Troubled waters: Estimating the role of the power sector in future water scarcity crises," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022144
    DOI: 10.1016/j.energy.2023.128820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Energy-water-carbon nexus system planning: A case study of Yangtze River Delta urban agglomeration, China," Applied Energy, Elsevier, vol. 308(C).
    2. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    3. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    4. Alena Lohrmann & Javier Farfan & Upeksha Caldera & Christoph Lohrmann & Christian Breyer, 2019. "Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery," Nature Energy, Nature, vol. 4(12), pages 1040-1048, December.
    5. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    6. Siddiqi, Afreen & Anadon, Laura Diaz, 2011. "The water-energy nexus in Middle East and North Africa," Energy Policy, Elsevier, vol. 39(8), pages 4529-4540, August.
    7. Feeley, Thomas J. & Skone, Timothy J. & Stiegel, Gary J. & McNemar, Andrea & Nemeth, Michael & Schimmoller, Brian & Murphy, James T. & Manfredo, Lynn, 2008. "Water: A critical resource in the thermoelectric power industry," Energy, Elsevier, vol. 33(1), pages 1-11.
    8. Lohrmann, Alena & Child, Michael & Breyer, Christian, 2021. "Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system," Energy, Elsevier, vol. 233(C).
    9. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    10. Thopil, George Alex & Pouris, Anastassios, 2016. "A 20 year forecast of water usage in electricity generation for South Africa amidst water scarce conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1106-1121.
    11. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    13. Murrant, Daniel & Quinn, Andrew & Chapman, Lee & Heaton, Chris, 2017. "Water use of the UK thermal electricity generation fleet by 2050: Part 1 identifying the problem," Energy Policy, Elsevier, vol. 108(C), pages 844-858.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kahsar, Rudy, 2020. "The potential for brackish water use in thermoelectric power generation in the American southwest," Energy Policy, Elsevier, vol. 137(C).
    2. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    3. Hoffmann, Bastian & Häfele, Sebastian & Karl, Ute, 2013. "Analysis of performance losses of thermal power plants in Germany – A System Dynamics model approach using data from regional climate modelling," Energy, Elsevier, vol. 49(C), pages 193-203.
    4. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Shen, Jijie & Yi, Peng & Zhang, Xumin & Yang, Yuantao & Fang, Jinzhu & Chi, Yuanying, 2023. "Can water conservation and energy conservation be promoted simultaneously in China?," Energy, Elsevier, vol. 278(PA).
    6. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Zhang, Yiyi & Fang, Jiake & Wang, Saige & Yao, Huilu, 2020. "Energy-water nexus in electricity trade network: A case study of interprovincial electricity trade in China," Applied Energy, Elsevier, vol. 257(C).
    8. Lohrmann, Alena & Child, Michael & Breyer, Christian, 2021. "Assessment of the water footprint for the European power sector during the transition towards a 100% renewable energy system," Energy, Elsevier, vol. 233(C).
    9. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    10. Gonzalez Sanchez, Rocio & Seliger, Roman & Fahl, Fernando & De Felice, Luca & Ouarda, Taha B.M.J. & Farinosi, Fabio, 2020. "Freshwater use of the energy sector in Africa," Applied Energy, Elsevier, vol. 270(C).
    11. Banhidarah, Abdullah Khamis & Al-Sumaiti, Ameena Saad & Wescoat, James L. & Nguyen, Hoach The, 2020. "Electricity-water usage for sustainable development: An analysis of United Arab Emirates farms," Energy Policy, Elsevier, vol. 147(C).
    12. Sesma Martín, Diego & Rubio-Varas, Mª. del Mar, 2017. "Freshwater for Cooling Needs: A Long-Run Approach to the Nuclear Water Footprint in Spain," Ecological Economics, Elsevier, vol. 140(C), pages 146-156.
    13. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    14. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    15. Chai, Li & Liao, Xiawei & Yang, Liu & Yan, Xianglin, 2018. "Assessing life cycle water use and pollution of coal-fired power generation in China using input-output analysis," Applied Energy, Elsevier, vol. 231(C), pages 951-958.
    16. Eisenack, Klaus, 2016. "Institutional adaptation to cooling water scarcity for thermoelectric power generation under global warming," Ecological Economics, Elsevier, vol. 124(C), pages 153-163.
    17. Bogmans, Christian W.J. & Dijkema, Gerard P.J. & van Vliet, Michelle T.H., 2017. "Adaptation of thermal power plants: The (ir)relevance of climate (change) information," Energy Economics, Elsevier, vol. 62(C), pages 1-18.
    18. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    19. Caldera, Upeksha & Breyer, Christian, 2020. "Strengthening the global water supply through a decarbonised global desalination sector and improved irrigation systems," Energy, Elsevier, vol. 200(C).
    20. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.