IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19756-z.html
   My bibliography  Save this article

High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics

Author

Listed:
  • Byeongmoon Lee

    (Seoul National University
    Korea Institute of Science and Technology)

  • Hyeon Cho

    (Seoul National University
    Korea Institute of Science and Technology)

  • Kyung Tae Park

    (Korea Institute of Science and Technology)

  • Jin-Sang Kim

    (Korea Institute of Science and Technology)

  • Min Park

    (Korea Institute of Science and Technology
    Kyung Hee University)

  • Heesuk Kim

    (Korea Institute of Science and Technology)

  • Yongtaek Hong

    (Seoul National University)

  • Seungjun Chung

    (Korea Institute of Science and Technology)

Abstract

Softening of thermoelectric generators facilitates conformal contact with arbitrary-shaped heat sources, which offers an opportunity to realize self-powered wearable applications. However, existing wearable thermoelectric devices inevitably exhibit reduced thermoelectric conversion efficiency due to the parasitic heat loss in high-thermal-impedance polymer substrates and poor thermal contact arising from rigid interconnects. Here, we propose compliant thermoelectric generators with intrinsically stretchable interconnects and soft heat conductors that achieve high thermoelectric performance and unprecedented conformability simultaneously. The silver-nanowire-based soft electrodes interconnect bismuth-telluride-based thermoelectric legs, effectively absorbing strain energy, which allows our thermoelectric generators to conform perfectly to curved surfaces. Metal particles magnetically self-assembled in elastomeric substrates form soft heat conductors that significantly enhance the heat transfer to the thermoelectric legs, thereby maximizing energy conversion efficiency on three-dimensional heat sources. Moreover, automated additive manufacturing paves the way for realizing self-powered wearable applications comprising hundreds of thermoelectric legs with high customizability under ambient conditions.

Suggested Citation

  • Byeongmoon Lee & Hyeon Cho & Kyung Tae Park & Jin-Sang Kim & Min Park & Heesuk Kim & Yongtaek Hong & Seungjun Chung, 2020. "High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19756-z
    DOI: 10.1038/s41467-020-19756-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19756-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19756-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    2. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    4. Seung-Han Kang & Jeong-Wan Jo & Jong Min Lee & Sanghee Moon & Seung Bum Shin & Su Bin Choi & Donghwan Byeon & Jaehyun Kim & Myung-Gil Kim & Yong-Hoon Kim & Jong-Woong Kim & Sung Kyu Park, 2024. "Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
    6. Diana Enescu, 2024. "Heat Transfer Mechanisms and Contributions of Wearable Thermoelectrics to Personal Thermal Management," Energies, MDPI, vol. 17(2), pages 1-29, January.
    7. Wei, Haoxiang & Zhang, Jian & Han, Yang & Xu, Dongyan, 2022. "Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling," Applied Energy, Elsevier, vol. 326(C).
    8. Yan Liu & Qihao Zhang & Aibin Huang & Keyi Zhang & Shun Wan & Hongyi Chen & Yuntian Fu & Wusheng Zuo & Yongzhe Wang & Xun Cao & Lianjun Wang & Uli Lemmer & Wan Jiang, 2024. "Fully inkjet-printed Ag2Se flexible thermoelectric devices for sustainable power generation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yijie Liu & Xiaodong Wang & Shuaihang Hou & Zuoxu Wu & Jian Wang & Jun Mao & Qian Zhang & Zhiguo Liu & Feng Cao, 2023. "Scalable-produced 3D elastic thermoelectric network for body heat harvesting," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19756-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.