IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031025.html
   My bibliography  Save this article

Parametric modeling and optimization of the intake port in a naturally aspirated opposed rotary piston engine across the full speed range

Author

Listed:
  • Wang, Yufeng
  • Gao, Jian
  • Gao, Jianbing
  • Wang, Xiaochen
  • Song, Jilong
  • Tian, Guohong

Abstract

The opposed rotary piston (ORP) engine offers advantages such as compact size, simple structure, and high power density, making it highly promising for long-endurance unmanned aerial vehicles (UAVs). Parametric modeling of intake ports and the investigation of structural parameters on intake characteristics for ORP engines are crucial for improving the intake performance. In this paper, based on the kinematic model of the ORP engine, parametric modeling of the intake and exhaust ports are performed, a 3D numerical model is established to explore the intake characteristics at different engine speeds. The impact of intake delayed closing angle (IDCA), intake inclination angle (IIA), and dual intake ports on the intake characteristics of the ORP engine are investigated. Finally, the combustion characteristics and performance metrics of the engine using optimized intake ports are compared against the baseline intake phase. The results indicate that the CGE and pumping loss of the ORP engine initially increase and then decrease with rising engine speed. The CGE exceeds 92 % at 1000 r·min−1 and 94 % at 5000 r·min−1 when the IDCA are set at 8° and the IIA at −20°. The pumping losses at 4000 r·min−1 and 5000 r·min−1 are reduced by 33.3 % and 30.9 %, respectively, after intake port optimization. The performance metrics at 1000 r·min−1 and 2000 r·min−1 show a slight decline compared to pre-optimization due to lower turbulence kinetic energy (TKE) and intake backflow. However, at 3000–5000 r·min−1, the optimized intake port structure significantly improves performance metrics of the ORP engine.

Suggested Citation

  • Wang, Yufeng & Gao, Jian & Gao, Jianbing & Wang, Xiaochen & Song, Jilong & Tian, Guohong, 2024. "Parametric modeling and optimization of the intake port in a naturally aspirated opposed rotary piston engine across the full speed range," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031025
    DOI: 10.1016/j.energy.2024.133326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Pan & Junfang Ma & Junyin Li & Hongzhe Liu & Jing Wei & Jingjing Xu & Tao Zhu & Hairui Zhang & Wei Li & Jiaying Pan, 2022. "Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine," Energies, MDPI, vol. 15(22), pages 1-13, November.
    2. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    3. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    4. Osman Akin Kutlar & Fatih Malkaz, 2019. "Two-Stroke Wankel Type Rotary Engine: A New Approach for Higher Power Density," Energies, MDPI, vol. 12(21), pages 1-22, October.
    5. Bowen Zhang & Zaixin Song & Fei Zhao & Chunhua Liu, 2022. "Overview of Propulsion Systems for Unmanned Aerial Vehicles," Energies, MDPI, vol. 15(2), pages 1-25, January.
    6. Jia, Ming & Li, Yaopeng & Xie, Maozhao & Wang, Tianyou, 2013. "Numerical evaluation of the potential of late intake valve closing strategy for diesel PCCI (premixed charge compression ignition) engine in a wide speed and load range," Energy, Elsevier, vol. 51(C), pages 203-215.
    7. Sher, E. & Bar-Kohany, T., 2002. "Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study," Energy, Elsevier, vol. 27(8), pages 757-775.
    8. Huang, Junfeng & Gao, Jianbing & Wang, Yufeng & Yang, Ce & Ma, Chaochen & Tian, Guohong, 2023. "Effect of asymmetric fuel injection on combustion characteristics and NOx emissions of a hydrogen opposed rotary piston engine," Energy, Elsevier, vol. 262(PB).
    9. Wahono, Bambang & Setiawan, Ardhika & Lim, Ocktaeck, 2021. "Effect of the intake port flow direction on the stability and characteristics of the in-cylinder flow field of a small motorcycle engine," Applied Energy, Elsevier, vol. 288(C).
    10. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    11. Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
    12. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Xing, Shikai & Jenner, Phil, 2021. "Performance explorations of a naturally aspirated opposed rotary piston engine fuelled with hydrogen under part load and stoichiometric conditions using a numerical simulation approach," Energy, Elsevier, vol. 222(C).
    13. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    14. Gao, Jianbing & Zhang, Huijie & Li, Juxia & Wang, Yufeng & Tian, Guohong & Ma, Chaochen & Wang, Xiaochen, 2022. "Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine," Renewable Energy, Elsevier, vol. 187(C), pages 428-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Jianhui & Lei, Jian & Tian, Guohong & Wang, Xiaomeng & Wang, Huaiyu & Shi, Cheng, 2024. "A review of the application development and key technologies of rotary engines under the background of carbon neutrality," Energy, Elsevier, vol. 311(C).
    2. Huang, Junfeng & Gao, Jianbing & Wang, Yufeng & Yang, Ce & Ma, Chaochen & Tian, Guohong, 2023. "Effect of asymmetric fuel injection on combustion characteristics and NOx emissions of a hydrogen opposed rotary piston engine," Energy, Elsevier, vol. 262(PB).
    3. Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Huang, Liyong & Xing, Shikai, 2021. "Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios," Renewable Energy, Elsevier, vol. 179(C), pages 1204-1216.
    4. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    5. Fan, Baowei & Song, Anqi & Liu, Weikang & Jiang, Pengfei & Xu, Linxun & Pan, Jianfeng & Zhang, Yi, 2024. "Potential improvement in combustion performance of a natural gas rotary engine mixed with hydrogen by novel bluff-body," Energy, Elsevier, vol. 295(C).
    6. Fan, Baowei & Zeng, Yonghao & Pan, Jianfeng & Fang, Jia & Salami, Hammed Adeniyi & Wang, Yuanguang, 2022. "Numerical study of injection strategy on the combustion process in a peripheral ported rotary engine fueled with natural gas/hydrogen blends under the action of apex seal leakage," Energy, Elsevier, vol. 242(C).
    7. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    8. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
    9. Jana Hoffmann & Niklas Mirsch & Walter Vera-Tudela & Dario Wüthrich & Jorim Rosenberg & Marco Günther & Stefan Pischinger & Daniel A. Weiss & Kai Herrmann, 2023. "Flow Field Investigation of a Single Engine Valve Using PIV, POD, and LES," Energies, MDPI, vol. 16(5), pages 1-31, March.
    10. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    11. Fabio Anaclerio & Annarita Viggiano & Francesco Fornarelli & Paolo Caso & Domenico Sparaco & Vinicio Magi, 2024. "The Influence of the Intake Geometry on the Performance of a Four-Stroke SI Engine for Aeronautical Applications," Energies, MDPI, vol. 17(21), pages 1-27, October.
    12. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    13. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
    14. Zammit, J.P. & McGhee, M.J. & Shayler, P.J. & Law, T. & Pegg, I., 2015. "The effects of early inlet valve closing and cylinder disablement on fuel economy and emissions of a direct injection diesel engine," Energy, Elsevier, vol. 79(C), pages 100-110.
    15. Jia, Dongdong & Qiao, Junhao & Wang, Shuqian & Guan, Jinhuan & Liu, Jingping & Fu, Jianqin & Li, Yangyang & Wang, Rumin, 2024. "Influence of variable enhanced LIVC miller cycle coupled with high compression ratio on the performance and combustion of a supercharged spark ignition engine," Energy, Elsevier, vol. 309(C).
    16. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    17. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    19. Meng, Hao & Ji, Changwei & Su, Teng & Yang, Jinxin & Chang, Ke & Xin, Gu & Wang, Shuofeng, 2022. "Analyzing characteristics of knock in a hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 250(C).
    20. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.