IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224031025.html
   My bibliography  Save this article

Parametric modeling and optimization of the intake port in a naturally aspirated opposed rotary piston engine across the full speed range

Author

Listed:
  • Wang, Yufeng
  • Gao, Jian
  • Gao, Jianbing
  • Wang, Xiaochen
  • Song, Jilong
  • Tian, Guohong

Abstract

The opposed rotary piston (ORP) engine offers advantages such as compact size, simple structure, and high power density, making it highly promising for long-endurance unmanned aerial vehicles (UAVs). Parametric modeling of intake ports and the investigation of structural parameters on intake characteristics for ORP engines are crucial for improving the intake performance. In this paper, based on the kinematic model of the ORP engine, parametric modeling of the intake and exhaust ports are performed, a 3D numerical model is established to explore the intake characteristics at different engine speeds. The impact of intake delayed closing angle (IDCA), intake inclination angle (IIA), and dual intake ports on the intake characteristics of the ORP engine are investigated. Finally, the combustion characteristics and performance metrics of the engine using optimized intake ports are compared against the baseline intake phase. The results indicate that the CGE and pumping loss of the ORP engine initially increase and then decrease with rising engine speed. The CGE exceeds 92 % at 1000 r·min−1 and 94 % at 5000 r·min−1 when the IDCA are set at 8° and the IIA at −20°. The pumping losses at 4000 r·min−1 and 5000 r·min−1 are reduced by 33.3 % and 30.9 %, respectively, after intake port optimization. The performance metrics at 1000 r·min−1 and 2000 r·min−1 show a slight decline compared to pre-optimization due to lower turbulence kinetic energy (TKE) and intake backflow. However, at 3000–5000 r·min−1, the optimized intake port structure significantly improves performance metrics of the ORP engine.

Suggested Citation

  • Wang, Yufeng & Gao, Jian & Gao, Jianbing & Wang, Xiaochen & Song, Jilong & Tian, Guohong, 2024. "Parametric modeling and optimization of the intake port in a naturally aspirated opposed rotary piston engine across the full speed range," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031025
    DOI: 10.1016/j.energy.2024.133326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224031025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.