IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223014913.html
   My bibliography  Save this article

Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite

Author

Listed:
  • Hu, Lin
  • Guo, Xian-Hou
  • Wei, Xian-Yong
  • Liu, Fang-Jing
  • Xu, Mei-Ling
  • Liu, Tian-Long
  • Zhang, Feng-Bin

Abstract

A green and efficient sequential isopropanolysis liquefaction approach was reported to convert lignite into high yield of liquid tars (LTs) as fuels/value-added chemicals in this research, but its influence on the molecular structure composition of LTs and physicochemical structure evolution of lignite still received little attention. The sequential isopropanolysis of RB lignite was performed at 240, 280, and 320 °C in isopropanol for obtaining three LTs (LT240 °C, LT280 °C, and LT320 °C) and three residues (R240 °C, R280 °C, and R320 °C). Among three LTs, phenols represented the highest relative content value, accounting for 72.54, 90.48, and 84.83%, respectively, and mainly can be divided into phenol and (C1–C8)-phenol. There was hydrocarbon, Oy (y = 1–5), NOy (y = 0–2), N2Oy (y = 0–2), N3Oy (y = 0–1), NxSz (x = 0–1, z = 1–2), and SNxOy (x = 1–2, y = 1–2) class species existed in three LTs on the basic of the analysis with quadrupole exactive orbitrap mass spectrometer (QEOTMS). Notably, O1 and O2 class species were the more abundant components in three LTs. The cleavage of C–O bridged bonds should be the main reaction path and the graphitization degree of residues significantly enhanced. The main pyrolysis zone of residues shifted to higher temperature area and the pyrolysis activation energy of stage II increased.

Suggested Citation

  • Hu, Lin & Guo, Xian-Hou & Wei, Xian-Yong & Liu, Fang-Jing & Xu, Mei-Ling & Liu, Tian-Long & Zhang, Feng-Bin, 2023. "Research on the influence of sequential isopropanolysis liquefaction on the composition of liquid tars and physicochemical structure evolution of renbei lignite," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014913
    DOI: 10.1016/j.energy.2023.128097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Meng & Wang, Jiaofei & Bai, Yonghui & Lv, Peng & Song, Xudong & Su, Weiguang & Wei, Juntao & Yu, Guangsuo, 2022. "Decoupling of volatile–char interaction in co-pyrolysis of cow manure and bituminous coal and deactivation mechanism of coal char reactivity," Energy, Elsevier, vol. 251(C).
    2. Kong, Xiangchen & Liu, Chao & Wang, Xing & Fan, Yuyang & Xu, Weicong & Xiao, Rui, 2022. "Production of oxygen-containing fuels via supercritical methanol hydrodeoxygenation of lignin bio-oil over Cu/CuZnAlOx catalyst," Applied Energy, Elsevier, vol. 316(C).
    3. Sun, Bingkang & Zhang, Xiaoyun & Fan, Xing & Wang, Ruiyu & Bai, Hongcun & Wei, Xianyong, 2022. "Interface modification based on MnO2@N-doped activated carbon composites for flexible solid-state asymmetric supercapacitors," Energy, Elsevier, vol. 249(C).
    4. Zhou, Xiao-Dong & Ma, Feng-Yun & Wu, Hao & Li, Yi-Zhao & Fan, Xing & Zhu, Yu-Fei & Wei, Xian-Yong & Liu, Jing-Mei & Zhong, Mei, 2021. "The effects of Fe2O3 and MoS2 on the catalytic activation pathway of hydrogen sources during direct coal liquefaction," Energy, Elsevier, vol. 234(C).
    5. Xu, Ying & Wang, Jiming & Zhang, Guojie & Zhang, Xiaodi & Qin, Xiaowei & Zhang, Yongfa, 2022. "Evaluation of hydrothermal treatment on physicochemical properties and re-adsorption behaviors of lignite," Energy, Elsevier, vol. 244(PA).
    6. Lin, Yan & Wang, Haitao & Fang, Shiwen & Huang, Zhen & Wei, Guoqiang & Zhang, Yongqi & Xia, Hongqiang & Zhao, Zengli & Huang, Hongyu, 2022. "Chemical looping combustion of lignite using iron ore: C-gas products (CO2, CO, CH4) and NOx emissions," Energy, Elsevier, vol. 256(C).
    7. He, Qing & Cheng, Chen & Zhang, Xinsha & Guo, Qinghua & Ding, Lu & Raheem, Abdul & Yu, Guangsuo, 2022. "Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis," Energy, Elsevier, vol. 244(PB).
    8. Zhang, Nan & Zhang, Jianliang & Wang, Guangwei & Ning, Xiaojun & Meng, Fanyi & Li, Chuanhui & Ye, Lian & Wang, Chuan, 2022. "Physicochemical characteristics of three-phase products of low-rank coal by hydrothermal carbonization: experimental research and quantum chemical calculation," Energy, Elsevier, vol. 261(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    2. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    3. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    4. Liu, Hao-Dong & Zhang, Hang & Wang, Jie-Ping & Dou, Jin-Xiao & Guo, Rui & Li, Guang-Yue & Liang, Ying-Hua & Yu, Jiang-long, 2024. "Construction of macromolecular model of coal based on deep learning algorithm," Energy, Elsevier, vol. 294(C).
    5. Zeng, Kuo & Wang, Biao & Xia, Shengpeng & Cui, Chaoxian & Wang, Chenyang & Zheng, Anqing & Zhao, Kun & Zhao, Zengli & Li, Haibin & Isobaev, M.D., 2022. "Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature," Energy, Elsevier, vol. 254(PA).
    6. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    7. Zhu, Hongqing & Liao, Qi & Qu, Baolin & Hu, Lintao & Wang, Haoran & Gao, Rongxiang & Zhang, Yilong, 2023. "Relationship between the main functional groups and complex permittivity in pre-oxidised lignite at terahertz frequencies based on grey correlation analysis," Energy, Elsevier, vol. 278(C).
    8. Ma, Cheng & Zhao, Yuzhen & Lang, Tingting & Zou, Chong & Zhao, Junxue & Miao, Zongcheng, 2023. "Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars," Energy, Elsevier, vol. 277(C).
    9. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
    10. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    11. Lv, Chunfei & Ma, Xiaojun & Guo, Ranran & Li, Dongna & Hua, Xuewen & Jiang, Tianyu & Li, Hongpeng & Liu, Yang, 2023. "Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor," Energy, Elsevier, vol. 270(C).
    12. Li, Dun & Gao, Jianmin & Du, Qian & Zhao, Ziqi & Dong, Heming & Cui, Zhaoyang, 2023. "Influence of an iron compound added to coal on soot formation," Energy, Elsevier, vol. 266(C).
    13. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    14. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    15. Yu, Yan & Lau, Anthony & Sokhansanj, Shahabaddine, 2022. "Hydrothermal carbonization and pelletization of moistened wheat straw," Renewable Energy, Elsevier, vol. 190(C), pages 1018-1028.
    16. Zhu, Yingbo & Ma, Yulong & Sun, Yonggang & Wang, Liqiong & Ding, Jie & Zhong, Yudan & Zhang, Juan & Wang, Lei & Li, Yuanyuan, 2023. "In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation," Renewable Energy, Elsevier, vol. 217(C).
    17. Chen, Shanshuai & Yan, Puxiang & Yu, Xiaona & Zhu, Wanbin & Wang, Hongliang, 2023. "Conversion of lignin to high yields of aromatics over Ru–ZnO/SBA-15 bifunctional catalysts," Renewable Energy, Elsevier, vol. 215(C).
    18. Chen, Rui & Cai, Jun & Li, Xinli & Lyu, Qinggang & Qi, Xiaobin, 2023. "Modelling of large biomass and coal particle based on a novel C-DAEM: A numerical study on heat transfer and pyrolysis behavior," Energy, Elsevier, vol. 283(C).
    19. Chen, Mingqiang & Li, Hong & Wang, Yishuang & Tang, Zhiyuan & Dai, Wei & Li, Chang & Yang, Zhonglian & Wang, Jun, 2023. "Lignin depolymerization for aromatic compounds over Ni-Ce/biochar catalyst under aqueous-phase glycerol," Applied Energy, Elsevier, vol. 332(C).
    20. Zhou, Xiao-Dong & Wu, Hao & Liu, Jing-Mei & Huang, Xue-Li & Fan, Xing & Jin, Li-Jun & Zhu, Yu-Fei & Ma, Feng-Yun & Zhong, Mei, 2022. "Study on oxygen species in the products of co-liquefaction of coal and petroleum residues," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223014913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.