IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p671-d136581.html
   My bibliography  Save this article

Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln

Author

Listed:
  • Mojtaba Mirhosseini

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg East, Denmark)

  • Alireza Rezaniakolaei

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg East, Denmark)

  • Lasse Rosendahl

    (Department of Energy Technology, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg East, Denmark)

Abstract

A numerical study on combined free convection, forced convection, and radiation heat transfers from an industrial isothermal rotating cylinder (cement kiln) is carried out in this work. The investigation is done by the study of two-dimensional (2D) incompressible turbulent flow around the kiln under steady- and unsteady-state solutions. The results of this study show that the average Reynolds and Rayleigh numbers around the cylindrical kiln are 647,812.1 and 1.75986 × 10 11 , respectively. A heat absorber is specifically designed around the kiln, according to the available space around the kiln, in a sample cement factory. The study investigates the effect of an added absorber on the heat transfer features, for both constant heat flux and constant temperature, on the kiln. The temperature distribution along the absorber circumference is obtained for designing an efficient thermoelectric waste heat recovery system as a future study. It is observed that the contribution of the radiative heat transfer is significant in the total heat transferred from the kiln to the absorber.

Suggested Citation

  • Mojtaba Mirhosseini & Alireza Rezaniakolaei & Lasse Rosendahl, 2018. "Numerical Study on Heat Transfer to an Arc Absorber Designed for a Waste Heat Recovery System around a Cement Kiln," Energies, MDPI, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:671-:d:136581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/671/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
    2. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    3. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    4. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
    5. Ju O Kang & Sung Chul Kim, 2019. "Heat Transfer Characteristics of Heat Exchangers for Waste Heat Recovery from a Billet Casting Process," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:671-:d:136581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.