IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp1849-1861.html
   My bibliography  Save this article

Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers

Author

Listed:
  • Ali, Mahmoud
  • Rady, Mohamed
  • Attia, Mohamed A.A.
  • Ewais, Emad M.M.

Abstract

In concentrating solar power plants with central towers, successful design of volumetric solar receivers requires proper understanding of the interaction between optical, heat transfer, and fluid flow phenomena occurring at the microscopic scale of receiver structure material and their effect on the overall solar-to-thermal efficiency. In the present article, coupled, 3D, optical, heat transfer and fluid flow numerical models have been developed for the analysis and design of honeycomb volumetric receiver modules. The optical model considers the absorptivity and micro dimensions of honeycomb absorber structure and employs a Monte Carlo ray tracing technique to calculate and analyze the absorbed solar heat flux distribution. This, in turn, is employed as a volumetric heat source term at the solid surface for consistent heat transfer and fluid flow modeling using a realistic solution domain and proper boundary conditions. The validated models have been employed to investigate the effects of different types of absorber materials, material absorptivity, and air flow rate on the performance of the solar receiver. It has been shown that positive volumetric effect and high solar-to-thermal efficiency can be obtained by controlling the absorbed radiation heat flux distribution within the honeycomb receiver using surface coating of the absorber material.

Suggested Citation

  • Ali, Mahmoud & Rady, Mohamed & Attia, Mohamed A.A. & Ewais, Emad M.M., 2020. "Consistent coupled optical and thermal analysis of volumetric solar receivers with honeycomb absorbers," Renewable Energy, Elsevier, vol. 145(C), pages 1849-1861.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1849-1861
    DOI: 10.1016/j.renene.2019.07.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
    2. Nidia Aracely Cisneros-Cárdenas & Rafael Cabanillas-López & Ricardo Pérez-Enciso & Guillermo Martínez-Rodríguez & Rafael García-Gutiérrez & Carlos Pérez-Rábago & Ramiro Calleja-Valdez & David Riveros-, 2021. "Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator," Energies, MDPI, vol. 14(21), pages 1-15, October.
    3. Guilong Dai & Ying Zhuang & Xiaoyu Wang & Xue Chen & Chuang Sun & Shenghua Du, 2022. "Experimental Investigation on the Vector Characteristics of Concentrated Solar Radiation Flux Map," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    5. Sharma, Sonika & Talukdar, Prabal, 2024. "Thermo-mechanical performance enhancement of volumetric solar receivers using graded porous absorbers," Energy, Elsevier, vol. 304(C).
    6. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    7. Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
    8. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Vishwa Deepak Kumar & Vikas K. Upadhyay & Gurveer Singh & Sudipto Mukhopadhyay & Laltu Chandra, 2022. "Open volumetric air receiver: An innovative application and a major challenge," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    10. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:1849-1861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.