IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5333278.html
   My bibliography  Save this article

An Enhanced Slime Mould Algorithm and Its Application for Digital IIR Filter Design

Author

Listed:
  • Xiaodan Liang
  • Dong Wu
  • Yang Liu
  • Maowei He
  • Liling Sun
  • Juan L. G. Guirao

Abstract

In the past few decades, metaheuristic algorithms (MA) have been developed tremendously and have been successfully applied in many fields. In recent years, a large number of new MA have been proposed. Slime mould algorithm (SMA) is a novel swarm-based intelligence optimization algorithm. SMA solves the optimization problem by imitating the foraging and movement behavior of slime mould. It can effectively obtain a promising global optimal solution. However, it still suffers some shortcomings such as the unstable convergence speed, the imprecise search accuracy, and incapability of identifying a local optimal solution when faced with complicated optimization problems. With the purpose of overcoming the shortcomings of SMA, this paper proposed a multistrategy enhanced version of SMA called ESMA. The three enhanced strategies are chaotic initialization strategy (CIS), orthogonal learning strategy (OLS), and boundary reset strategy (BRS). The CIS is used to generate an initial population with diversity in the early stage of ESMA, which can increase the convergence speed of the algorithm and the quality of the final solution. Then, the OLS is used to discover the useful information of the best solutions and offer a potential search direction, which enhances the local search ability and raises the convergence rate. Finally, the BRS is used to correct individual positions, which ensures the population diversity and enhances the overall search capabilities of ESMA. The performance of ESMA was validated on the 30 IEEE CEC2014 functions and three IIR model identification problems, compared with other nine well-regarded and state-of-the-art algorithms. Simulation results and analysis prove that the ESMA has a superior performance. The three strategies involved in ESMA have significantly improved the performance of the basic SMA.

Suggested Citation

  • Xiaodan Liang & Dong Wu & Yang Liu & Maowei He & Liling Sun & Juan L. G. Guirao, 2021. "An Enhanced Slime Mould Algorithm and Its Application for Digital IIR Filter Design," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-23, December.
  • Handle: RePEc:hin:jnddns:5333278
    DOI: 10.1155/2021/5333278
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5333278.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ddns/2021/5333278.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5333278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakraborty, Amit & Ray, Saheli, 2023. "Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm," Energy, Elsevier, vol. 278(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5333278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.