IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223011325.html
   My bibliography  Save this article

Double-edged effect of tar on anaerobic digestion: Equivalent method and modeling investigation

Author

Listed:
  • Sun, Hangyu
  • Yang, Ziyi
  • Liu, Guangqing
  • Zhang, Yi
  • Tong, Yen Wah
  • Wang, Wen

Abstract

This study investigated the influence of real tar (RT) and synthetic tar (ST) on anaerobic digestion (AD). Mapping relationship was built effectively between ST set and RT set through equivalent method. Both sets performed the double-edged effect on AD: low dosage of tar performed stimulated effect and high dosage caused inhibited effect. Anaerobic Digestion Model No.1 (ADM1) was modified and extended by introducing kinetic parameters (inhibition constant: KI, Monod maximum uptake rate: km, Monod half saturation constant: Ks) of tar to describe related degradation process. Model calibration with ST set data achieved accurate simulation of methane production with satisfactory R2 (0.80–0.97), and model validation was conducted with RT set data. The linkage between kinetic parameters and microbial community was further bridged. The decrease of km_H2 (km of hydrogen) value was less than km_ac (km of acetate) value, corresponding to the less sensitivity of hydrogenotrophic methanogenesis to tar toxicity as reflected by 16S rRNA. Modified ADM1 could help in understanding AD system macroscopically and microscopically.

Suggested Citation

  • Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Zhang, Yi & Tong, Yen Wah & Wang, Wen, 2023. "Double-edged effect of tar on anaerobic digestion: Equivalent method and modeling investigation," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011325
    DOI: 10.1016/j.energy.2023.127738
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karsten Zengler & Hans H. Richnow & Ramon Rosselló-Mora & Walter Michaelis & Friedrich Widdel, 1999. "Methane formation from long-chain alkanes by anaerobic microorganisms," Nature, Nature, vol. 401(6750), pages 266-269, September.
    2. Bułkowska, K. & Białobrzewski, I. & Klimiuk, E. & Pokój, T., 2018. "Kinetic parameters of volatile fatty acids uptake in the ADM1 as key factors for modeling co-digestion of silages with pig manure, thin stillage and glycerine phase," Renewable Energy, Elsevier, vol. 126(C), pages 163-176.
    3. D. M. Jones & I. M. Head & N. D. Gray & J. J. Adams & A. K. Rowan & C. M. Aitken & B. Bennett & H. Huang & A. Brown & B. F. J. Bowler & T. Oldenburg & M. Erdmann & S. R. Larter, 2008. "Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs," Nature, Nature, vol. 451(7175), pages 176-180, January.
    4. Yang, Ziyi & Wang, Wen & He, Yanfeng & Zhang, Ruihong & Liu, Guangqing, 2018. "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 125(C), pages 915-925.
    5. Papurello, Davide & Lanzini, Andrea & Leone, Pierluigi & Santarelli, Massimo, 2016. "The effect of heavy tars (toluene and naphthalene) on the electrochemical performance of an anode-supported SOFC running on bio-syngas," Renewable Energy, Elsevier, vol. 99(C), pages 747-753.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    2. Ma, Lei & Zhou, Lei & Mbadinga, Serge Maurice & Gu, Ji-Dong & Mu, Bo-Zhong, 2018. "Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters," Energy, Elsevier, vol. 147(C), pages 663-671.
    3. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).
    4. Zarei, Sasan & Mousavi, Seyyed Mohammad & Amani, Teimour & Khamforoush, Mehrdad & Jafari, Arezou, 2021. "Three-dimensional CFD simulation of anaerobic reactions in a continuous packed-bed bioreactor," Renewable Energy, Elsevier, vol. 169(C), pages 461-472.
    5. Papurello, Davide & Chiodo, Vitaliano & Maisano, Susanna & Lanzini, Andrea & Santarelli, Massimo, 2018. "Catalytic stability of a Ni-Catalyst towards biogas reforming in the presence of deactivating trace compounds," Renewable Energy, Elsevier, vol. 127(C), pages 481-494.
    6. Andrea Zanellati & Federica Spina & Luca Rollé & Giovanna Cristina Varese & Elio Dinuccio, 2020. "Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    7. Yu, Lu & Yuan, Haiping & Zhu, Nanwen & Shen, Yanwen, 2021. "How does choline change methanogenesis pathway in anaerobic digestion of waste activated sludge?," Energy, Elsevier, vol. 224(C).
    8. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Pohl, Marcel & Sánchez-Sánchez, Maria & Mumme, Jan, 2019. "Anaerobic digestion of wheat straw and rape oil cake in a two-stage solid-state system," Renewable Energy, Elsevier, vol. 141(C), pages 359-367.
    10. Bruno P. Morais & Valdo Martins & Gilberto Martins & Ana Rita Castro & Maria Madalena Alves & Maria Alcina Pereira & Ana J. Cavaleiro, 2021. "Hydrocarbon Toxicity towards Hydrogenotrophic Methanogens in Oily Waste Streams," Energies, MDPI, vol. 14(16), pages 1-11, August.
    11. Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
    12. M. Devendran Manogaran & Mohd Hakimi & Mohammad Harith Nizam Basheer Ahmad & Rashid Shamsuddin & Jun Wei Lim & Muzamil Abdalla M Hassan & Nurul Tasnim Sahrin, 2023. "Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study," Sustainability, MDPI, vol. 15(7), pages 1-11, March.
    13. Papurello, Davide & Iafrate, Chiara & Lanzini, Andrea & Santarelli, Massimo, 2017. "Trace compounds impact on SOFC performance: Experimental and modelling approach," Applied Energy, Elsevier, vol. 208(C), pages 637-654.
    14. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.
    15. Tamara Nazina & Diyana Sokolova & Denis Grouzdev & Ekaterina Semenova & Tamara Babich & Salimat Bidzhieva & Dmitriy Serdukov & Dmitriy Volkov & Konstantin Bugaev & Alexey Ershov & Marat Khisametdinov , 2019. "The Potential Application of Microorganisms for Sustainable Petroleum Recovery from Heavy Oil Reservoirs," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    16. Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
    17. Papurello, Davide & Boschetti, Andrea & Silvestri, Silvia & Khomenko, Iuliia & Biasioli, Franco, 2018. "Real-time monitoring of removal of trace compounds with PTR-MS: Biochar experimental investigation," Renewable Energy, Elsevier, vol. 125(C), pages 344-355.
    18. Xiao, Benyi & Tang, Xinyi & Zhang, Wenzhe & Zhang, Ke & Yang, Tang & Han, Yunping & Liu, Junxin, 2022. "Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture," Energy, Elsevier, vol. 239(PB).
    19. Sotirios D. Kalamaras & Georgios Vitoulis & Maria Lida Christou & Themistoklis Sfetsas & Spiridon Tziakas & Vassilios Fragos & Petros Samaras & Thomas A. Kotsopoulos, 2021. "The Effect of Ammonia Toxicity on Methane Production of a Full-Scale Biogas Plant—An Estimation Method," Energies, MDPI, vol. 14(16), pages 1-13, August.
    20. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.