IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223011258.html
   My bibliography  Save this article

Multi-objective optimization of aerodynamic and erosion resistance performances of a high-pressure turbine

Author

Listed:
  • Zhang, Jiankun
  • Liu, Haihu

Abstract

Focusing on a high-pressure turbine, this study conducts a multi-objective optimization aimed to improve its aerodynamic and erosion resistance performances. With a self-adaptive updated Kriging model first applied, the Latin hypercube sampling method and NSGA-II algorithm are then used to find trade-off solutions. The sensitivity analysis shows that the efficiency is mainly influenced by the flow angles near trailing edges of three selected blade spans, among which the flow angle near the trailing edge of middle span is the most significant, followed by the root span and tip span, while the dominant design parameters affecting the erosion are the flow angles near trailing edges of middle span and tip span. After optimization, the erosion around the middle span on pressure side and middle chord on suction side is significantly reduced due to the decrease of impact velocity and impact frequency, and the increase of impact angle. Besides, the low-velocity fluid regions near the pressure side of middle span and the trialing edge of tip are greatly reduced, which can relieve the blockage of flow passage. At all axial sections considered, the optimized blade is shown to significantly reduce losses near the tip and suction side, especially at 80% axial section.

Suggested Citation

  • Zhang, Jiankun & Liu, Haihu, 2023. "Multi-objective optimization of aerodynamic and erosion resistance performances of a high-pressure turbine," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011258
    DOI: 10.1016/j.energy.2023.127731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye, Xuemin & Zhang, Jiankun & Li, Chunxi, 2017. "Effect of blade tip pattern on performance of a twin-stage variable-pitch axial fan," Energy, Elsevier, vol. 126(C), pages 535-563.
    2. Persico, Giacomo & Romei, Alessandro & Dossena, Vincenzo & Gaetani, Paolo, 2018. "Impact of shape-optimization on the unsteady aerodynamics and performance of a centrifugal turbine for ORC applications," Energy, Elsevier, vol. 165(PA), pages 2-11.
    3. Açıkel, Halil Hakan & Serdar Genç, Mustafa, 2018. "Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface," Energy, Elsevier, vol. 165(PA), pages 176-190.
    4. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    5. Wang, Xing & Zhang, Xuehui & Zhu, Yangli & Zhang, Xinjing & Li, Wen & Chen, Haisheng, 2019. "Effect of blade tip leakage flow on erosion of a radial inflow turbine for compressed air energy storage system," Energy, Elsevier, vol. 178(C), pages 195-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kai & Liu, Hanyu & Wang, Like & Guo, Pengcheng & Wang, Yueshe & Yang, Junfeng, 2024. "Effect of particle size on vortex structure and erosion behavior of semi-open centrifugal pump," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Agee, Philip & Nikdel, Leila & McCoy, Andrew & Kianpour rad, Simin & Gao, Xinghua, 2024. "Manufactured housing: Energy burden outcomes from measured and simulated building performance data," Energy Policy, Elsevier, vol. 186(C).
    4. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    5. Witanowski, Ł. & Klonowicz, P. & Lampart, P. & Suchocki, T. & Jędrzejewski, Ł. & Zaniewski, D. & Klimaszewski, P., 2020. "Optimization of an axial turbine for a small scale ORC waste heat recovery system," Energy, Elsevier, vol. 205(C).
    6. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    7. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    8. Retno Agustarini & Yetti Heryati & Yelin Adalina & Wahyu Catur Adinugroho & Dhany Yuniati & Rizki Ary Fambayun & Gerhard Eli Sabastian & Asep Hidayat & Hesti Lestari Tata & William Ingram & Aulia Perd, 2022. "The Development of Indigofera spp. as a Source of Natural Dyes to Increase Community Incomes on Timor Island, Indonesia," Economies, MDPI, vol. 10(2), pages 1-30, February.
    9. Sumeet R. Patil & H. Christopher Frey, 2004. "Comparison of Sensitivity Analysis Methods Based on Applications to a Food Safety Risk Assessment Model," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 573-585, June.
    10. Otero R, Gustavo J. & Smit, Stephan H.H.J. & Pecnik, Rene, 2021. "Three-dimensional unsteady stator-rotor interactions in high-expansion organic Rankine cycle turbines," Energy, Elsevier, vol. 217(C).
    11. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    12. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    13. Layimar Cegarra & Andrea Colins & Ziomara P Gerdtzen & Marco T Nuñez & J Cristian Salgado, 2019. "Mathematical modeling of the relocation of the divalent metal transporter DMT1 in the intestinal iron absorption process," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-26, June.
    14. Luigi Dolores & Maria Macchiaroli & Gianluigi De Mare, 2022. "Financial Impacts of the Energy Transition in Housing," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    15. Mariem Ellouze & Jean‐Pierre Gauchi & Jean‐Christophe Augustin, 2010. "Global Sensitivity Analysis Applied to a Contamination Assessment Model of Listeria monocytogenes in Cold Smoked Salmon at Consumption," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 841-852, May.
    16. Nakhchi, M.E. & Naung, S. Win & Rahmati, M., 2021. "High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers," Energy, Elsevier, vol. 225(C).
    17. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    18. Xuemin Ye & Fuwei Fan & Ruixing Zhang & Chunxi Li, 2019. "Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades," Energies, MDPI, vol. 12(12), pages 1-20, June.
    19. Andreas Binder & Onkar Jadhav & Volker Mehrmann, 2021. "Error Analysis of a Model Order Reduction Framework for Financial Risk Analysis," Papers 2110.00774, arXiv.org.
    20. Babak Jafarizadeh, 2022. "Forecasts of Prices and Informed Sensitivity Analysis: Applications in Project Valuations," Decision Analysis, INFORMS, vol. 19(3), pages 205-219, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.