IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v276y2023ics0360544223009787.html
   My bibliography  Save this article

Research on personalized charging strategy of electric bus under time-varying constraints

Author

Listed:
  • Zhao, Li
  • Ke, Hanchen
  • Li, Yuqi
  • Chen, Yong

Abstract

For electric bus fleets that have smaller battery capacity and use a short departure gap to recharge, due to the differences in remaining capacity of battery, allowable charging time, and bus line energy consumption, a unified charging strategy cannot further extend the battery service life, reduce the operating costs of the fleet, and ensure the bus punctuality. To solve this problem, a personalized charging strategy for electric bus fleet based on genetic algorithm and nearest neighbor algorithm was proposed, in which the remaining battery capacity, the allowable charging time and the line energy consumption are taken as time-varying constraints, a long-term charging experimental dataset of batteries under different charging strategies are used to construct the nearest neighbor regression model, and a penalty function is used to provide evolutionary pressure. Simulation and experimental analysis show that the algorithm can efficiently find the optimal charging strategy within the solution space allowed by penalty function constraints, effectively extend the service life of the power battery, and ensure the punctuality of the vehicle.

Suggested Citation

  • Zhao, Li & Ke, Hanchen & Li, Yuqi & Chen, Yong, 2023. "Research on personalized charging strategy of electric bus under time-varying constraints," Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009787
    DOI: 10.1016/j.energy.2023.127584
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223009787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Chao & Jain, Gaurav & Zhang, Puqiang & Schmidt, Craig & Gomadam, Parthasarathy & Gorka, Tom, 2014. "Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery," Applied Energy, Elsevier, vol. 129(C), pages 49-55.
    2. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    3. Alwesabi, Yaseen & Wang, Yong & Avalos, Raul & Liu, Zhaocai, 2020. "Electric bus scheduling under single depot dynamic wireless charging infrastructure planning," Energy, Elsevier, vol. 213(C).
    4. Greg Cooney & Troy R. Hawkins & Joe Marriott, 2013. "Life Cycle Assessment of Diesel and Electric Public Transportation Buses," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 689-699, October.
    5. Qin, Nan & Gusrialdi, Azwirman & Paul Brooker, R. & T-Raissi, Ali, 2016. "Numerical analysis of electric bus fast charging strategies for demand charge reduction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 386-396.
    6. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    7. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    8. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    9. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Lajunen, Antti & Lipman, Timothy, 2016. "Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses," Energy, Elsevier, vol. 106(C), pages 329-342.
    11. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    12. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    13. Delucchi, Mark & Lipman, Timothy, 2001. "An Analysis of the Retail and Lifecycle Cost of Battery-Powered Electric Vehicles," Institute of Transportation Studies, Working Paper Series qt50q9060k, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong, Yuan & Bie, Yiming & Liu, Ziyan & Zhu, Aoze, 2024. "Collaborative vehicle-crew scheduling for multiple routes with a mixed fleet of electric and fuel buses," Energy, Elsevier, vol. 298(C).
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    2. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    3. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    4. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. He, Yi & Liu, Zhaocai & Zhang, Yiming & Song, Ziqi, 2023. "Time-dependent electric bus and charging station deployment problem," Energy, Elsevier, vol. 282(C).
    6. Zhao, Li & Ke, Hanchen & Huo, Weiwei, 2023. "A frequency item mining based energy consumption prediction method for electric bus," Energy, Elsevier, vol. 263(PD).
    7. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Yiming Bie & Mingjie Hao & Mengzhu Guo, 2021. "Optimal Electric Bus Scheduling Based on the Combination of All-Stop and Short-Turning Strategies," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    9. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    10. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    11. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    12. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    13. Feifeng Zheng & Zhixin Wang & Zhaojie Wang & Ming Liu, 2023. "Daytime and Overnight Joint Charging Scheduling for Battery Electric Buses Considering Time-Varying Charging Power," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    14. Bao, Zhaoyao & Li, Jiapei & Bai, Xuehan & Xie, Chi & Chen, Zhibin & Xu, Min & Shang, Wen-Long & Li, Hailong, 2023. "An optimal charging scheduling model and algorithm for electric buses," Applied Energy, Elsevier, vol. 332(C).
    15. Alwesabi, Yaseen & Liu, Zhaocai & Kwon, Soongeol & Wang, Yong, 2021. "A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses," Energy, Elsevier, vol. 230(C).
    16. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    17. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2024. "The economics of public transport electrification: The charging dilemma," Energy Economics, Elsevier, vol. 135(C).
    18. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    19. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    20. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.