IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224006510.html
   My bibliography  Save this article

High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale

Author

Listed:
  • Wei, Jianguang
  • Zhou, Xiaofeng
  • Shamil, Sultanov
  • Yuriy, Kotenev
  • Yang, Erlong
  • Yang, Ying
  • Wang, Anlun

Abstract

In this paper, statistical research on the characterization of pore and fracture structures is systematically conducted on shale reservoirs in different blocks and under different lithofacies conditions. The impact of lithological characteristics on shale pore fracture structures is revealed, and the coupling mechanism of "high-pressure mercury injection, pore fracture structure, and lithofacies" is clarified. Results show that: (a). When the capillary force is equal to 0.0035 MPa, the pore throat radius is equal to 209.661 μm. (b). There exist turning pressures both in injection curve and removal curve. When the capillary pressure is lower than 100 MPa, the slope of injection curve is high, while when the capillary pressure is higher than 100 MPa, the slope of injection curve becomes lower. (c). The majority of pores is distributed in the pore size interval range from 0.063 μm to 0.004 μm. (d). There are also a certain amount of regular pores in inorganic pores. Part of the pores are secondary intergranular dissolved pores formed by later dissolution.

Suggested Citation

  • Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2024. "High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006510
    DOI: 10.1016/j.energy.2024.130879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    2. Hui, Gang & Chen, Zhangxin & Schultz, Ryan & Chen, Shengnan & Song, Zhaojie & Zhang, Zhaochen & Song, Yilei & Wang, Hai & Wang, Muming & Gu, Fei, 2023. "Intricate unconventional fracture networks provide fluid diffusion pathways to reactivate pre-existing faults in unconventional reservoirs," Energy, Elsevier, vol. 282(C).
    3. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Liao, Hualin & Hu, Gaowei & Li, Yanlong, 2023. "A coupled thermal-hydraulic-mechanical model for drilling fluid invasion into hydrate-bearing sediments," Energy, Elsevier, vol. 278(C).
    4. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    5. Dong, Yichen & Mao, Songbo & Guo, Feiqiang & Shu, Rui & Bai, Jiaming & Qian, Lin & Bai, Yonghui, 2022. "Coal gasification fine slags: Investigation of the potential as both microwave adsorbers and catalysts in microwave-induced biomass pyrolysis applications," Energy, Elsevier, vol. 238(PB).
    6. He, Jiawei & Li, He & Yang, Wei & Lu, Jiexin & Lu, Yi & Liu, Ting & Shi, Shiliang, 2023. "Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery," Energy, Elsevier, vol. 283(C).
    7. Han, Xu & Feng, Fuping & Zhang, Jianwei, 2023. "Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition," Energy, Elsevier, vol. 278(PB).
    8. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    9. Kim, Kyunghyun & Kim, Jaeyeon & Choi, Heesoo & Kwon, Obeen & Jang, Yujae & Ryu, Sangbong & Lee, Heeyun & Shim, Kyuhwan & Park, Taehyun & Cha, Suk Won, 2023. "Pre-diagnosis of flooding and drying in proton exchange membrane fuel cells by bagging ensemble deep learning models using long short-term memory and convolutional neural networks," Energy, Elsevier, vol. 266(C).
    10. Li, Yunzhuo & Ji, Huaijun & Li, Guichuan & Hu, Shaobin & Liu, Xu, 2023. "Effect of supercritical CO2 transient high-pressure fracturing on bituminous coal microstructure," Energy, Elsevier, vol. 282(C).
    11. Nie, Bin, 2023. "Development of low-metamorphic coalbed methane reservoirs with superheated steam injection: Simulation of wellbore heat transfer," Energy, Elsevier, vol. 275(C).
    12. Lu, Ning & Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Xu, Wenjing & Zeng, Deshang, 2024. "Molecular insights into the synergistic mechanisms of hybrid CO2-surfactant thermal systems at heavy oil-water interfaces," Energy, Elsevier, vol. 286(C).
    13. Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
    14. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    15. Qin, Chao & Jiang, Yongdong & Zhou, Junping & Zuo, Shuangying & Chen, Shiwan & Liu, Zhengjie & Yin, Hong & Li, Ye, 2022. "Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery," Energy, Elsevier, vol. 242(C).
    16. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of offshore coalbed methane reservoirs: Flow characteristics of superheated steam in wellbores," Energy, Elsevier, vol. 266(C).
    17. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    18. Shao, Jiaxin & You, Lijun & Jia, Na & Kang, Yili & Chen, Mingjun & Lei, Xiaowen, 2023. "Salt crystal: Natural proppant for enhancing shale reservoir production," Energy, Elsevier, vol. 262(PB).
    19. Mao, Liangjie & Wei, Changjiang & Jia, Hai & Lu, Kechong, 2023. "Prediction model of drilling wellbore temperature considering bit heat generation and variation of mud thermophysical parameters," Energy, Elsevier, vol. 284(C).
    20. Fang, Yujia & Yang, Erlong & Guo, Songlin & Cui, Changyu & Zhou, Congcong, 2022. "Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield," Energy, Elsevier, vol. 254(PC).
    21. Cruz, Matheus de Andrade & Brigagão, George Victor & de Medeiros, José Luiz & Musse, Ana Paula Santana & Kami, Eduardo & Freire, Ronaldo Lucas Alkmin & Araújo, Ofélia de Queiroz Fernandes, 2023. "Decarbonization of energy supply to offshore oil & gas production with post-combustion capture: A simulation-based techno-economic analysis," Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    2. Duan, Zhonghui & Zhang, Yongmin & Yang, Fu & Liu, Meijuan & Wang, Zhendong & Zhao, Youzhi & Ma, Li, 2024. "Research on controllable shock wave technology for in-situ development of tar-rich coal," Energy, Elsevier, vol. 288(C).
    3. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    4. Wei, Jianguang & Zhang, Dong & Zhou, Xiaofeng & Zhou, Runnan & Shamil, Sultanov & Li, Jiangtao & Gayubov, Abdumalik & Hadavimoghaddam, Fahimeh & Chen, Yinghe & Xia, Bing & Fu, Ping & Wang, Yue, 2024. "Characterization of pore structures after ASP flooding for post-EOR," Energy, Elsevier, vol. 300(C).
    5. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
    6. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    7. Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
    8. Li, Jiangtao & Zhou, Xiaofeng & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    9. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    10. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    11. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    12. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).
    13. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    14. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    15. Wei, Jianguang & Zhang, Dong & Zhang, Xin & Zhao, Xiaoqing & Zhou, Runnan, 2023. "Experimental study on water flooding mechanism in low permeability oil reservoirs based on nuclear magnetic resonance technology," Energy, Elsevier, vol. 278(PB).
    16. Ji, Bingnan & Pan, Hongyu & Pang, Mingkun & Pan, Mingyue & Zhang, Hang & Zhang, Tianjun, 2023. "Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures," Energy, Elsevier, vol. 282(C).
    17. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).
    18. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    19. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    20. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of offshore coalbed methane reservoirs: Flow characteristics of superheated steam in wellbores," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224006510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.