IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v147y2021icp159-176.html
   My bibliography  Save this article

The economic impacts of restricting black carbon emissions on cargo shipping in the Polar Code Area

Author

Listed:
  • Kong, Qingxu
  • Jiang, Changmin
  • Ng, Adolf K.Y.

Abstract

Since black carbon (BC) has become one of the most harmful pollutants and partly accelerated the melting of the Arctic sea ice, internationally mandatory policy to limit black carbon emissions in the whole Polar Code Area is on the agenda. To cope with this policy, some potential measures from both the coastal government and the shipowners, as well as the economic impacts of these measures, are considered in this paper. We analyze the daily navigation profits and the corresponding BC emissions after these measures are adopted. Since equipment-related cost is usually regarded as fixed and cannot be calculated on a daily basis, this paper also proposes an equipment investment payback period to access the time needed to achieve a balance between the investments and the profits of applying the equipment. A case of a dry bulk carrier navigating through the Northwest Passage is presented for concrete quantitative analysis. The results indicate that wind propulsion system can help shipowners mitigate the largest amount of BC emission. Wind-driven generators, which are used for auxiliary generating system, are the most economic-beneficial to shipowners under the current technology environment. Besides, we found that BC emission tax rate set by coastal governments plays an important role in the selection of different measures by shipowners.

Suggested Citation

  • Kong, Qingxu & Jiang, Changmin & Ng, Adolf K.Y., 2021. "The economic impacts of restricting black carbon emissions on cargo shipping in the Polar Code Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 159-176.
  • Handle: RePEc:eee:transa:v:147:y:2021:i:c:p:159-176
    DOI: 10.1016/j.tra.2021.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421000513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Cherng-Yuan, 2013. "Strategies for promoting biodiesel use in marine vessels," Marine Policy, Elsevier, vol. 40(C), pages 84-90.
    2. Chang, Ching-Chih, 2012. "Marine energy consumption, national economic activity, and greenhouse gas emissions from international shipping," Energy Policy, Elsevier, vol. 41(C), pages 843-848.
    3. Chen, H. & Chen, G.Q., 2011. "Energy cost of rapeseed-based biodiesel as alternative energy in China," Renewable Energy, Elsevier, vol. 36(5), pages 1374-1378.
    4. Brewer, Thomas L., 2019. "Black carbon emissions and regulatory policies in transportation," Energy Policy, Elsevier, vol. 129(C), pages 1047-1055.
    5. Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
    6. Lindstad, Haakon & Asbjørnslett, Bjørn E. & Strømman, Anders H., 2012. "The importance of economies of scale for reductions in greenhouse gas emissions from shipping," Energy Policy, Elsevier, vol. 46(C), pages 386-398.
    7. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    8. Ren, Jingzheng & Lützen, Marie, 2017. "Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1003-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Lu & Zhang, Shuanglu & Zhuge, Dan & Wang, Shuaian & Wang, Yong, 2024. "An emission control policymaking model for sustainable river transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    3. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    4. Laurent Fedi & Olivier Faury & Laurent Etienne & Ali Cheaitou & Patrick Rigot-Muller, 2024. "Application of the IMO taxonomy on casualty investigation: Analysis of 20 years of marine accidents along the North-East Passage," Post-Print hal-04483233, HAL.
    5. Lindstad, Haakon & Bright, Ryan M. & Strømman, Anders H., 2016. "Economic savings linked to future Arctic shipping trade are at odds with climate change mitigation," Transport Policy, Elsevier, vol. 45(C), pages 24-30.
    6. Xue, Xiaobo & Pang, YuLei & Landis, Amy E., 2014. "Evaluating agricultural management practices to improve the environmental footprint of corn-derived ethanol," Renewable Energy, Elsevier, vol. 66(C), pages 454-460.
    7. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    8. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    9. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    10. Li Chin Law & Beatrice Foscoli & Epaminondas Mastorakos & Stephen Evans, 2021. "A Comparison of Alternative Fuels for Shipping in Terms of Lifecycle Energy and Cost," Energies, MDPI, vol. 14(24), pages 1-32, December.
    11. Uusitalo, V. & Väisänen, S. & Havukainen, J. & Havukainen, M. & Soukka, R. & Luoranen, M., 2014. "Carbon footprint of renewable diesel from palm oil, jatropha oil and rapeseed oil," Renewable Energy, Elsevier, vol. 69(C), pages 103-113.
    12. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    13. Chen, Lihong & Ren, Jingzheng, 2018. "Multi-attribute sustainability evaluation of alternative aviation fuels based on fuzzy ANP and fuzzy grey relational analysis," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 176-186.
    14. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    15. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2021. "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Abdel-Basset, Mohamed & Gamal, Abduallah & Chakrabortty, Ripon K. & Ryan, Michael J., 2021. "Evaluation approach for sustainable renewable energy systems under uncertain environment: A case study," Renewable Energy, Elsevier, vol. 168(C), pages 1073-1095.
    17. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    18. Lee, Tsung-Chen & Chang, Young-Tae & Lee, Paul T.W., 2013. "Economy-wide impact analysis of a carbon tax on international container shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 87-102.
    19. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    20. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:147:y:2021:i:c:p:159-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.