IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4645-d377377.html
   My bibliography  Save this article

Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany

Author

Listed:
  • Luxi Jin

    (Geography Department, Humboldt-Universität zu Berlin, 10117 Berlin, Germany)

  • Sebastian Schubert

    (Geography Department, Humboldt-Universität zu Berlin, 10117 Berlin, Germany)

  • Mohamed Hefny Salim

    (Geography Department, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
    Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt)

  • Christoph Schneider

    (Geography Department, Humboldt-Universität zu Berlin, 10117 Berlin, Germany)

Abstract

This study investigates the effect of anthropogenic heat emissions from air conditioning systems (AC) on air temperature and AC energy consumption in Berlin, Germany. We conduct simulations applying the model system CCLM/DCEP-BEM, a coupled system of the mesoscale climate model COSMO-CLM (CCLM) and the urban Double Canyon Effect Parameterization scheme with a building energy model (DCEP-BEM), for a summer period of 2018. The DCEP-BEM model is designed to explicitly compute the anthropogenic heat emissions from urban buildings and the heat flux transfer between buildings and the atmosphere. We investigate two locations where the AC outdoor units are installed: either on the wall of a building (VerAC) or on the rooftop of a building (HorAC). AC waste heat emissions considerably increase the near-surface air temperature. Compared to a reference scenario without AC systems, the VerAC scenario with a target indoor temperature of 22 ∘ C results in a temperature increase of up to 0.6 K . The increase is more pronounced during the night and for urban areas. The effect of HorAC on air temperature is overall smaller than in VerAC. With the target indoor temperature of 22 ∘ C , an urban site’s daily average AC energy consumption per floor area of a room is 9.1 W m 2 , which is 35% more than that of a suburban site. This energy-saving results from the urban heat island effect and different building parameters between both sits. The maximum AC energy consumption occurs in the afternoon. When the target indoor temperature rises, the AC energy consumption decreases at a rate of about 16% per 2 K change in indoor temperature. The nighttime near-surface temperature in VerAC scenarios shows a declining trend ( 0.06 K per 2 K change) with increasing target indoor temperature. This feature is not obvious in HorAC scenarios which further confirms that HorAC has a smaller impact on near-surface air temperature.

Suggested Citation

  • Luxi Jin & Sebastian Schubert & Mohamed Hefny Salim & Christoph Schneider, 2020. "Impact of Air Conditioning Systems on the Outdoor Thermal Environment during Summer in Berlin, Germany," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4645-:d:377377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Xiaoyu & González, Jorge E. & Shen, Shuanghe & Miao, Shiguang & Dou, Junxia, 2018. "Impacts of urbanization and air pollution on building energy demands — Beijing case study," Applied Energy, Elsevier, vol. 225(C), pages 98-109.
    2. Cui, Ying & Yan, Da & Hong, Tianzhen & Ma, Jingjin, 2017. "Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance," Energy, Elsevier, vol. 130(C), pages 286-297.
    3. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    4. Kikegawa, Yukihiro & Genchi, Yutaka & Yoshikado, Hiroshi & Kondo, Hiroaki, 2003. "Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings' energy-demands," Applied Energy, Elsevier, vol. 76(4), pages 449-466, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    2. Yang, Xiaoshan & Peng, Lilliana L.H. & Jiang, Zhidian & Chen, Yuan & Yao, Lingye & He, Yunfei & Xu, Tianjing, 2020. "Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing," Applied Energy, Elsevier, vol. 260(C).
    3. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    4. Deng, Ji-Yu & Wong, Nyuk Hien & Zheng, Xin, 2021. "Effects of street geometries on building cooling demand in Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    6. Ulpiani, Giulia & di Perna, Costanzo & Zinzi, Michele, 2019. "Water nebulization to counteract urban overheating: Development and experimental test of a smart logic to maximize energy efficiency and outdoor environmental quality," Applied Energy, Elsevier, vol. 239(C), pages 1091-1113.
    7. Kikegawa, Yukihiro & Nakajima, Kazusa & Takane, Yuya & Ohashi, Yukitaka & Ihara, Tomohiko, 2022. "A quantification of classic but unquantified positive feedback effects in the urban-building-energy-climate system," Applied Energy, Elsevier, vol. 307(C).
    8. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    9. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    10. Theodoros Chrysanidis & Dimitra Mousama & Eleni Tzatzo & Nikolaos Alamanis & Dimos Zachos, 2022. "Study of the Effect of a Seismic Zone to the Construction Cost of a Five-Story Reinforced Concrete Building," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    11. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    12. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    13. Duan, Shuangping & Luo, Zhiwen & Yang, Xinyan & Li, Yuguo, 2019. "The impact of building operations on urban heat/cool islands under urban densification: A comparison between naturally-ventilated and air-conditioned buildings," Applied Energy, Elsevier, vol. 235(C), pages 129-138.
    14. Dong-Hyeon Kim & Byeong-Il Ahn & Eui-Gyeong Kim, 2016. "Metropolitan Residents’ Preferences and Willingness to Pay for a Life Zone Forest for Mitigating Heat Island Effects during Summer Season in Korea," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    15. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    16. Valéry Masson & Colette Marchadier & Luc Adolphe & Rahim Aguejdad & P. Avner & Marc Bonhomme & Geneviève Bretagne & X. Briottet & Bruno Bueno & Cécile de Munck & O. Doukari & Stéphane Hallegatte & Jul, 2014. "Adapting cities to climate change: A systemic modelling approach," Post-Print hal-01136215, HAL.
    17. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    18. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    19. Yigit Kazancoglu & Yalcin Berberoglu & Cisem Lafci & Oleksander Generalov & Denys Solohub & Viktor Koval, 2023. "Environmental Sustainability Implications and Economic Prosperity of Integrated Renewable Solutions in Urban Development," Energies, MDPI, vol. 16(24), pages 1-24, December.
    20. Chia-Ho Wu & Chih-Hong Huang & Yeou-Fong Li & Wei-Hao Lee & Ta-Wui Cheng, 2020. "Utilization of Basic Oxygen Furnace Slag in Geopolymeric Coating for Passive Radiative Cooling Application," Sustainability, MDPI, vol. 12(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4645-:d:377377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.