IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002773.html
   My bibliography  Save this article

Prediction and optimization of syngas production from Napier grass air gasification via kinetic modelling and response surface methodology

Author

Listed:
  • Qatan, Hesham Sadeq Obaid
  • Wan Ab Karim Ghani, Wan Azlina
  • Md Said, Mohamad Syazarudin

Abstract

In this research, a kinetic model was developed for Napier grass air gasification using Aspen Plus software and thereafter collated and validated with experimental results obtained from a lab-scale fluidized bed reactor. Herein, the model was further employed to investigate the effect of gasification operating parameters, including temperature (650–850) °C, equivalence ratio (0.2–0.4), and moisture content (0–18) wt.% on products’ yields and syngas quality. The model was segregated into four sections: the drying, devolatilization, combustion, and reduction sections. The outputs of tar, gas, and char from the devolatilization section were defined by external Microsoft Excel subroutine. Kinetic parameters were incorporated in the combustion and reduction sections to simulate tar cracking, oxidation, and reduction reactions. A good agreement was observed between the predicted and experimental results. Furthermore, response surface methodology (RSM) was employed to analyze the mutual effects of process variables and perform multi-objective optimization to maximize producer gas yield, higher heating value, carbon conversion efficiency, and cold gas efficiency by incorporating the predicted results from the developed kinetic model. The optimized syngas yield and HHV were 69.42 wt% and 8.14 MJ/Nm3 at 850 °C, 0.3021, and 15.69 wt% for temperature, ER, and moisture content, respectively.

Suggested Citation

  • Qatan, Hesham Sadeq Obaid & Wan Ab Karim Ghani, Wan Azlina & Md Said, Mohamad Syazarudin, 2023. "Prediction and optimization of syngas production from Napier grass air gasification via kinetic modelling and response surface methodology," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002773
    DOI: 10.1016/j.energy.2023.126883
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isah Y. Mohammed & Yousif A. Abakr & Feroz K. Kazi & Suzana Yusup & Ibraheem Alshareef & Soh A. Chin, 2015. "Comprehensive Characterization of Napier Grass as a Feedstock for Thermochemical Conversion," Energies, MDPI, vol. 8(5), pages 1-15, April.
    2. Rodriguez-Alejandro, David A. & Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Aguilera-Alvarado, Alberto F., 2016. "Development of a modified equilibrium model for biomass pilot-scale fluidized bed gasifier performance predictions," Energy, Elsevier, vol. 115(P1), pages 1092-1108.
    3. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    4. Md Said, Mohamad Syazarudin & Azni, Atiyyah Ameenah & Wan Ab Karim Ghani, Wan Azlina & Idris, Azni & Ja'afar, Mohamad Fakri Zaky & Mohd Salleh, Mohamad Amran, 2022. "Production of biochar from microwave pyrolysis of empty fruit bunch in an alumina susceptor," Energy, Elsevier, vol. 240(C).
    5. Hwang, In Sik & Sohn, Jungho & Lee, Uen Do & Hwang, Jungho, 2021. "CFD-DEM simulation of air-blown gasification of biomass in a bubbling fluidized bed gasifier: Effects of equivalence ratio and fluidization number," Energy, Elsevier, vol. 219(C).
    6. Awais, Muhammad & Omar, Muhammad Mubashar & Munir, Anjum & li, Wei & Ajmal, Muhammad & Hussain, Sajjad & Ahmad, Syed Amjad & Ali, Amjad, 2022. "Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Feihu & Zheng, Min & Yang, Shiliang & Wang, Hua, 2021. "Numerical study of fluid dynamics and heat transfer property of dual fluidized bed gasifier," Energy, Elsevier, vol. 234(C).
    2. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    3. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    4. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    5. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    6. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Lin, Yanpi & Li, Xiaojun & Zhu, Zuchao & Wang, Xunming & Lin, Tong & Cao, Haibin, 2022. "An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge," Energy, Elsevier, vol. 246(C).
    8. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    9. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Isah Yakub Mohammed & Feroz Kabir Kazi & Suzana Yusup & Peter Adeniyi Alaba & Yahaya Muhammad Sani & Yousif Abdalla Abakr, 2016. "Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst," Energies, MDPI, vol. 9(4), pages 1-17, March.
    11. Pio, D.T. & Tarelho, L.A.C., 2020. "Empirical and chemical equilibrium modelling for prediction of biomass gasification products in bubbling fluidized beds," Energy, Elsevier, vol. 202(C).
    12. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    13. Wang, Bo & Xu, Fanfan & Zong, Peijie & Zhang, Jinhong & Tian, Yuanyu & Qiao, Yingyun, 2019. "Effects of heating rate on fast pyrolysis behavior and product distribution of Jerusalem artichoke stalk by using TG-FTIR and Py-GC/MS," Renewable Energy, Elsevier, vol. 132(C), pages 486-496.
    14. Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Qiu, Jianhua & Wu, Fujun & Chen, Fangzhou & Huang, Weijia & Cai, Yezheng & Jiang, Juantao, 2022. "Entire process simulation and thermodynamic analysis of the catalytic gasification for synthetic natural gas from biomass," Energy, Elsevier, vol. 255(C).
    16. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    17. Soyoung Han & Yong-Chul Jang & Yeon-Seok Choi & Sang-Kyu Choi, 2020. "Thermogravimetric Kinetic Study of Automobile Shredder Residue (ASR) Pyrolysis," Energies, MDPI, vol. 13(6), pages 1-16, March.
    18. Chettaphong Phuttaro & Alissara Reungsang & Piyarat Boonsawang & Sumate Chaiprapat, 2019. "Integrative Effects of Sonication and Particle Size on Biomethanation of Tropical Grass Pennisetum purpureum Using Superior Diverse Inocula Cultures," Energies, MDPI, vol. 12(22), pages 1-16, November.
    19. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    20. Amaro, Jordan & Mendiburu, Andrés Z. & Ávila, Ivonete, 2018. "Modeling of syngas composition obtained from fluidized bed gasifiers using Kuhn–Tucker multipliers," Energy, Elsevier, vol. 152(C), pages 371-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.