IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001937.html
   My bibliography  Save this article

Optimization of site utility systems for renewable energy integration

Author

Listed:
  • Park, Haryn
  • Kim, Jin-Kuk
  • Yi, Sung Chul

Abstract

Considerable attention has been paid to the electrified energy supply based on renewable energy for achieving carbon-neutrality. A systematic and integrated approach is required to identify optimal operating strategies for the integration of electrified energy sources with conventional utility systems and to understand the techno-economic impact of using renewable energy on industrial energy management. Renewable-integrated industrial utility systems are modeled, which is optimized to investigate economic trade-off between capital investment, fuel consumption, power generation, and CO2 emission tax. Sensitivity of key design parameters is examined with the optimization framework, which allows to gain conceptual understanding on the economic impact of CO2 emission tax and prices of renewable electricity on site-wide heat and power management. Compared to the utility system based on the combustion of fossil fuels only, the operating cost of renewable-integrated system in the case study can be reduced about 14% in the operating cost and 9% in the capital cost through the strategic import of 20 MWe renewable electricity. The presented case studies fully illustrate economic impacts related to the implementation of renewable electricity to industrial utility systems and demonstrate the benefit of process-integrated optimization for renewable energy integration in practice.

Suggested Citation

  • Park, Haryn & Kim, Jin-Kuk & Yi, Sung Chul, 2023. "Optimization of site utility systems for renewable energy integration," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001937
    DOI: 10.1016/j.energy.2023.126799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Li & Gai, Limei & Smith, Robin, 2017. "Site utility system optimization with operation adjustment under uncertainty," Applied Energy, Elsevier, vol. 186(P3), pages 450-456.
    2. Zhao, Liang & You, Fengqi, 2019. "A data-driven approach for industrial utility systems optimization under uncertainty," Energy, Elsevier, vol. 182(C), pages 559-569.
    3. Sun, Li & Doyle, Steve & Smith, Robin, 2015. "Heat recovery and power targeting in utility systems," Energy, Elsevier, vol. 84(C), pages 196-206.
    4. Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).
    5. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    6. Ebrahimi, Siavash & Mac Kinnon, Michael & Brouwer, Jack, 2018. "California end-use electrification impacts on carbon neutrality and clean air," Applied Energy, Elsevier, vol. 213(C), pages 435-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladislav Volnyi & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks," Energies, MDPI, vol. 16(15), pages 1-26, August.
    2. Rehman, Anis Ur & Shafiq, Aqib & Ullah, Zia & Iqbal, Sheeraz & Hasanien, Hany M., 2023. "Implications of smart grid and customer involvement in energy management and economics," Energy, Elsevier, vol. 276(C).
    3. Piotr Narowski & Dariusz Heim & Maciej Mijakowski, 2024. "New External Design Temperatures and Geospatial Models for Poland and Central Europe for Building Heat Load Calculations," Energies, MDPI, vol. 17(16), pages 1-21, August.
    4. Veiga, Bruno & Santos, Gabriel & Pinto, Tiago & Faia, Ricardo & Ramos, Carlos & Vale, Zita, 2023. "Simulation tools for electricity markets considering power flow analysis," Energy, Elsevier, vol. 275(C).
    5. Liu, Yang & Zhao, Xiaomeng & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing the role of green finance in sustainable energy investments by power utilities: Evidence from China," Utilities Policy, Elsevier, vol. 84(C).
    6. Hasan M. Salman & Jagadeesh Pasupuleti & Ahmad H. Sabry, 2023. "Review on Causes of Power Outages and Their Occurrence: Mitigation Strategies," Sustainability, MDPI, vol. 15(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    2. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    3. Yu Huang & Weizhen Hou & Yiran Huang & Jiayu Li & Qixian Li & Dongfeng Wang & Yan Zhang, 2020. "Multi-Objective Optimal Operation for Steam Power Scheduling Based on Economic and Exergetic Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Han, Yulin & Zheng, Jingyuan & Luo, Xiaoyan & Qian, Yu & Yang, Siyu, 2023. "Multi-scenario data-driven robust optimisation for industrial steam power systems under uncertainty," Energy, Elsevier, vol. 263(PD).
    5. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    6. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    7. Sun, Li & Doyle, Stephen & Smith, Robin, 2016. "Understanding steam costs for energy conservation projects," Applied Energy, Elsevier, vol. 161(C), pages 647-655.
    8. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    10. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    11. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    12. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    13. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    14. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Xia, Yingqi & Sun, Gengchen & Wang, Yanfeng & Yang, Qing & Wang, Qingrui & Ba, Shusong, 2024. "A novel carbon emission estimation method based on electricity‑carbon nexus and non-intrusive load monitoring," Applied Energy, Elsevier, vol. 360(C).
    16. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    17. Boldyryev, Stanislav & Shamraev, Anatoly A. & Shamraeva, Elena O., 2021. "The design of the total site exchanger network with intermediate heat carriers: Theoretical insights and practical application," Energy, Elsevier, vol. 223(C).
    18. Haleh Moghaddasi & Charles Culp & Jorge Vanegas & Mehrdad Ehsani, 2021. "Net Zero Energy Buildings: Variations, Clarifications, and Requirements in Response to the Paris Agreement," Energies, MDPI, vol. 14(13), pages 1-21, June.
    19. Tian, Zhen & Zhou, Yihang & Zhang, Yuan & Gao, Wenzhong, 2024. "Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier," Energy, Elsevier, vol. 295(C).
    20. Barkaoui, Alae-Eddine & Boldyryev, Stanislav & Duic, Neven & Krajacic, Goran & Guzović, Zvonimir, 2016. "Appropriate integration of geothermal energy sources by Pinch approach: Case study of Croatia," Applied Energy, Elsevier, vol. 184(C), pages 1343-1349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.