IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v186y2017ip3p450-456.html
   My bibliography  Save this article

Site utility system optimization with operation adjustment under uncertainty

Author

Listed:
  • Sun, Li
  • Gai, Limei
  • Smith, Robin

Abstract

Utility systems must satisfy process energy and power demands under varying conditions. The system performance is decided by the system configuration and individual equipment operating load for boilers, gas turbines, steam turbines, condensers, and let down valves. Steam mains conditions in terms of steam pressures and steam superheating also play important roles on steam distribution in the system and power generation by steam expansion in steam turbines, and should be included in the system optimization. Uncertainties such as process steam power demand changes and electricity price fluctuations should be included in the system optimization to eliminate as much as possible the production loss caused by steam power deficits due to uncertainties. In this paper, uncertain factors are classified into time-based and probability-based uncertain factors, and operation scheduling containing multi-period equipment load sharing, redundant equipment start up, and electricity import to compensate for power deficits, have been presented to deal with the happens of uncertainties, and are formulated as a multi-period item and a recourse item in the optimization model. There are two case studies in this paper. One case illustrates the system design to determine system configuration, equipment selection, and system operation scheduling at the design stage to deal with uncertainties. The other case provides operational optimization scenarios for an existing system, especially when the steam superheating varies. The proposed method can provide practical guidance to system energy efficiency improvement.

Suggested Citation

  • Sun, Li & Gai, Limei & Smith, Robin, 2017. "Site utility system optimization with operation adjustment under uncertainty," Applied Energy, Elsevier, vol. 186(P3), pages 450-456.
  • Handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:450-456
    DOI: 10.1016/j.apenergy.2016.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty: Part I: Multiple time frame approach," Applied Energy, Elsevier, vol. 88(4), pages 1059-1067, April.
    2. El-Halwagi, Mahmoud & Harell, Dustin & Dennis Spriggs, H., 2009. "Targeting cogeneration and waste utilization through process integration," Applied Energy, Elsevier, vol. 86(6), pages 880-887, June.
    3. Kravanja, Zdravko & Čuček, Lidija, 2013. "Multi-objective optimisation for generating sustainable solutions considering total effects on the environment," Applied Energy, Elsevier, vol. 101(C), pages 67-80.
    4. Carpaneto, Enrico & Chicco, Gianfranco & Mancarella, Pierluigi & Russo, Angela, 2011. "Cogeneration planning under uncertainty. Part II: Decision theory-based assessment of planning alternatives," Applied Energy, Elsevier, vol. 88(4), pages 1075-1083, April.
    5. Sun, Li & Doyle, Steve & Smith, Robin, 2015. "Heat recovery and power targeting in utility systems," Energy, Elsevier, vol. 84(C), pages 196-206.
    6. Voll, Philip & Jennings, Mark & Hennen, Maike & Shah, Nilay & Bardow, André, 2015. "The optimum is not enough: A near-optimal solution paradigm for energy systems synthesis," Energy, Elsevier, vol. 82(C), pages 446-456.
    7. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    8. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    9. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    2. Boldyryev, Stanislav & Gil, Tatyana & Krajačić, Goran & Khussanov, Alisher, 2023. "Total site targeting with the simultaneous use of intermediate utilities and power cogeneration at the polymer plant," Energy, Elsevier, vol. 279(C).
    3. George N. Sakalis & George J. Tzortzis & Christos A. Frangopoulos, 2019. "Intertemporal Static and Dynamic Optimization of Synthesis, Design, and Operation of Integrated Energy Systems of Ships," Energies, MDPI, vol. 12(5), pages 1-50, March.
    4. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Yu Huang & Weizhen Hou & Yiran Huang & Jiayu Li & Qixian Li & Dongfeng Wang & Yan Zhang, 2020. "Multi-Objective Optimal Operation for Steam Power Scheduling Based on Economic and Exergetic Analysis," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    7. Park, Haryn & Kim, Jin-Kuk & Yi, Sung Chul, 2023. "Optimization of site utility systems for renewable energy integration," Energy, Elsevier, vol. 269(C).
    8. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    9. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    10. Han, Yulin & Zheng, Jingyuan & Luo, Xiaoyan & Qian, Yu & Yang, Siyu, 2023. "Multi-scenario data-driven robust optimisation for industrial steam power systems under uncertainty," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Li & Doyle, Stephen & Smith, Robin, 2016. "Understanding steam costs for energy conservation projects," Applied Energy, Elsevier, vol. 161(C), pages 647-655.
    2. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    3. Fadhil Y. Al-Aboosi & Mahmoud M. El-Halwagi, 2019. "A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems with Multiple Energy Sources under Uncertainty," Sustainability, MDPI, vol. 11(18), pages 1-39, September.
    4. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    5. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    6. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    7. Schachter, Jonathan A. & Mancarella, Pierluigi & Moriarty, John & Shaw, Rita, 2016. "Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation," Energy Policy, Elsevier, vol. 97(C), pages 439-449.
    8. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    9. Iliev, I.K. & Terziev, A.K. & Beloev, H.I. & Nikolaev, I. & Georgiev, A.G., 2021. "Comparative analysis of the energy efficiency of different types co-generators at large scales CHPs," Energy, Elsevier, vol. 221(C).
    10. Aviso, Kathleen B. & Tan, Raymond R., 2018. "Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems," Energy, Elsevier, vol. 154(C), pages 258-268.
    11. Ersoz, Ibrahim & Colak, Uner, 2016. "Combined cooling, heat and power planning under uncertainty," Energy, Elsevier, vol. 109(C), pages 1016-1025.
    12. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    13. Pini Prato, Alessandro & Strobino, Fabrizio & Broccardo, Marco & Parodi Giusino, Luigi, 2012. "Integrated management of cogeneration plants and district heating networks," Applied Energy, Elsevier, vol. 97(C), pages 590-600.
    14. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    15. Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
    16. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns," Applied Energy, Elsevier, vol. 136(C), pages 1110-1131.
    17. Qin, Chun & Wang, Linqing & Han, Zhongyang & Zhao, Jun & Liu, Quanli, 2021. "Weighted directed graph based matrix modeling of integrated energy systems," Energy, Elsevier, vol. 214(C).
    18. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Kitapbayev, Yerkin & Moriarty, John & Mancarella, Pierluigi, 2015. "Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems," Applied Energy, Elsevier, vol. 137(C), pages 823-831.
    20. Bahl, Björn & Lampe, Matthias & Voll, Philip & Bardow, André, 2017. "Optimization-based identification and quantification of demand-side management potential for distributed energy supply systems," Energy, Elsevier, vol. 135(C), pages 889-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:186:y:2017:i:p3:p:450-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.