IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544223000142.html
   My bibliography  Save this article

Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio

Author

Listed:
  • Wang, Shuo
  • Xiao, Guoqing
  • Feng, Yu
  • Mi, Hongfu

Abstract

Employing both experimental and computational methods, this paper investigates the propagation characteristics of the explosion flame for two cases with gradually increasing and decreasing barrier ratios of continuous obstacles. Three variation gradients of barrier ratio were set in the increasing and decreasing continuous obstacle regions (i.e., 0.1, 0.2, and 0.3). Experimental results show that the flame front is less prone to inversion. With the increase in the barrier ratio of continuous obstacles, the effectiveness of the flame front in counteracting the impact of inversion can be enhanced. However, the maximum flame speed corresponds to the moment delay. Obstacles with larger initial barrier ratios will induce higher flame speed. For explosive overpressure, the accumulation and superposition of precursor waves and expansion waves during the rapid release can generate higher overpressure downstream, with the increase in barrier ratio. Lower downstream overpressure is due to the weaker pressure accumulation efficiency with the decreasing barrier ratio. Numerical simulation results visualize the distribution of the vorticity behind the obstacle, which explicitly unveils the generation and evolution of vortices in space. The underlying mechanism of how the flame was squeezed and stratified is analyzed and discussed as well.

Suggested Citation

  • Wang, Shuo & Xiao, Guoqing & Feng, Yu & Mi, Hongfu, 2023. "Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544223000142
    DOI: 10.1016/j.energy.2023.126620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Creti & Duc Khuong Nguyen, 2018. "Energy and environment: Transition models and new policy challenges in the post Paris Agreement," Post-Print hal-02304365, HAL.
    2. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    3. Shakeel, Mohammad Raghib & Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2018. "Numerical modeling of oxy-methane combustion in a model gas turbine combustor," Applied Energy, Elsevier, vol. 228(C), pages 68-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
    2. Qi, Beibei & Li, Haitao & Zhai, Fuer & Yu, Minggao & Wei, Chengcai, 2024. "Experimental and numerical study on the explosion characteristics of syngas under different venting conditions," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    2. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    3. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    4. Minli Yu & Fu-Sheng Tsai & Hui Jin & Hejie Zhang, 2022. "Digital finance and renewable energy consumption: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    5. Lu, Jiajun & Yang, Shiliang & Wang, Hua, 2024. "Investigation of the oxygen-methane combustion and heating characteristics in industrial-scale copper anode refining furnace," Energy, Elsevier, vol. 298(C).
    6. Fang, Juan & Liu, Qibin & Guo, Shaopeng & Lei, Jing & Jin, Hongguang, 2019. "Spanning solar spectrum: A combined photochemical and thermochemical process for solar energy storage," Applied Energy, Elsevier, vol. 247(C), pages 116-126.
    7. Svobodova, K. & Owen, J.R. & Harris, J. & Worden, S., 2020. "Complexities and contradictions in the global energy transition: A re-evaluation of country-level factors and dependencies," Applied Energy, Elsevier, vol. 265(C).
    8. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    9. Xiao, Huahua & Duan, Qiangling & Sun, Jinhua, 2018. "Premixed flame propagation in hydrogen explosions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1988-2001.
    10. Ji, Qiang & Zhang, Dayong, 2019. "How much does financial development contribute to renewable energy growth and upgrading of energy structure in China?," Energy Policy, Elsevier, vol. 128(C), pages 114-124.
    11. Yang, Xufeng & Yu, Minggao & Zheng, Kai & Wan, Shaojie & Wang, Liang, 2019. "A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts," Energy, Elsevier, vol. 178(C), pages 436-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544223000142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.