IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v237y2021ics036054422101923x.html
   My bibliography  Save this article

Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion

Author

Listed:
  • Yang, Ke
  • Chen, Kaifeng
  • Ji, Hong
  • Xing, Zhixiang
  • Hao, Yongmei
  • Wu, Jie
  • Jiang, Juncheng

Abstract

Through visual explosion experiment platform, this study conducted comparative experiments on methane-air premixed gas with a methane volume fraction of 9.5 % under different working conditions. The experiment studied the effect of active explosion suppression (spraying modified attapulgite powder) and explosion venting (setting the outlet blockage ratios) on methane explosion. The results showed that when the amount of powder injection was constant, the outlet blockage ratios of the pipeline was positively correlated with the peak explosion overpressure and the explosion index, but was negatively correlated with the peak flame propagation velocity. When the outlet blockage ratio was constant, the amount of powder spraying was negatively correlated with the peak value of explosion overpressure and the peak value of flame propagation velocity. When the outlet blockage ratio was 0, the explosion precursor shock wave broke through the PVC plastic film, which made the influx of a large amount of fresh air promote the generation of turbulence in the pipeline, and a “tulip-shaped” flame front appeared. The combination of active explosion suppression and explosion venting showed different effects on the explosion overpressure and flame propagation characteristics of methane explosion. Finally, this study conducted an in-depth discussion on the complex mechanism contained in it.

Suggested Citation

  • Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:energy:v:237:y:2021:i:c:s036054422101923x
    DOI: 10.1016/j.energy.2021.121675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101923X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Seungro & Padilla, Rosa & Dunn-Rankin, Derek & Pham, Trinh & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed H2O-laden CH4/air flames," Energy, Elsevier, vol. 93(P1), pages 442-450.
    2. Luo, Zhenmin & Li, Dafang & Su, Bin & Zhang, Siqi & Deng, Jun, 2020. "On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases," Energy, Elsevier, vol. 198(C).
    3. Xiao, Huahua & He, Xuechao & Duan, Qiangling & Luo, Xisheng & Sun, Jinhua, 2014. "An investigation of premixed flame propagation in a closed combustion duct with a 90° bend," Applied Energy, Elsevier, vol. 134(C), pages 248-256.
    4. Wang, Tao & Luo, Zhenmin & Wen, Hu & Cheng, Fangming & Liu, Litao & Su, Yang & Liu, Changchun & Zhao, Jingyu & Deng, Jun & Yu, Minggao, 2021. "The explosion enhancement of methane-air mixtures by ethylene in a confined chamber," Energy, Elsevier, vol. 214(C).
    5. Ku, J.W. & Ahn, Y.J. & Kim, H.K. & Kim, Y.H. & Kwon, O.C., 2020. "Propagation and emissions of premixed methane-ammonia/air flames," Energy, Elsevier, vol. 201(C).
    6. Jiang, Haipeng & Bi, Mingshu & Peng, Qingkui & Gao, Wei, 2020. "Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4," Renewable Energy, Elsevier, vol. 147(P1), pages 2046-2055.
    7. Cao, Yong & Li, Bin & Gao, Kanghua, 2018. "Pressure characteristics during vented explosion of ethylene-air mixtures in a square vessel," Energy, Elsevier, vol. 151(C), pages 26-32.
    8. Ku, Jae Won & Choi, Sun & Kim, Hee Kyung & Lee, Seungro & Kwon, Oh Chae, 2018. "Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames," Energy, Elsevier, vol. 165(PA), pages 314-325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Ke & Liu, Guangyu & Ji, Hong & Xing, Zhixiang & Jiang, Juncheng & Yin, Yixuan, 2024. "The effects of different equivalence ratios and initial pressures on the explosion of methane/air premixed gas in closed space," Energy, Elsevier, vol. 297(C).
    2. Tian, Siyu & Qin, Botao & Ma, Dong & Zhou, Qigeng & Luo, Zhongzheng, 2023. "Suppressive effects of alkali metal salt modified dry water material on methane-air explosion," Energy, Elsevier, vol. 285(C).
    3. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).
    4. Yuan, Bihe & He, Yunlong & Chen, Xianfeng & Ding, Qingquan & Tang, Yi & Zhang, Yuduo & Li, Yi & Zhao, Qi & Huang, Chuyuan & Fang, Quan & Wang, Liancong & Jin, Hang, 2022. "Flame and shock wave evolution characteristics of methane explosion in a closed horizontal pipeline filled with a three-dimensional mesh porous material," Energy, Elsevier, vol. 260(C).
    5. Yang, Ke & Chen, Shujia & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Zheng, Kai & Jiang, Juncheng, 2023. "Experimental study on the coupling effect of heptafluoropropane and obstacles with different slits on the methane-air explosion," Energy, Elsevier, vol. 269(C).
    6. Yan, Ke & Qi, Shaobo & Li, Runhan & Sun, Haoshi & Bai, Jiaqi & Wang, Kuo & Li, Mingzhi & Yuan, Mengqi, 2024. "Study on the inhibition of explosion and combustion of coal dust based on the structure of core-shell microencapsulated polyurethane," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ke & Chen, Shujia & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Zheng, Kai & Jiang, Juncheng, 2023. "Experimental study on the coupling effect of heptafluoropropane and obstacles with different slits on the methane-air explosion," Energy, Elsevier, vol. 269(C).
    2. Luo, Zhenmin & Kang, Xiaofeng & Wang, Tao & Su, Bin & Cheng, Fangming & Deng, Jun, 2021. "Effects of an obstacle on the deflagration behavior of premixed liquefied petroleum gas-air mixtures in a closed duct," Energy, Elsevier, vol. 234(C).
    3. Jiang, Haipeng & Bi, Mingshu & Huang, Lei & Zhou, Yonghao & Gao, Wei, 2022. "Suppression mechanism of ultrafine water mist containing phosphorus compounds in methane/coal dust explosions," Energy, Elsevier, vol. 239(PA).
    4. Jing, Qi & Wang, Dan & Shi, Congling, 2023. "Effects of aluminum powder additives on deflagration and detonation performance of JP-10/DEE mixed fuel under weak and strong ignition conditions," Applied Energy, Elsevier, vol. 331(C).
    5. Wang, Tao & Luo, Zhenmin & Wen, Hu & Cheng, Fangming & Liu, Litao & Su, Yang & Liu, Changchun & Zhao, Jingyu & Deng, Jun & Yu, Minggao, 2021. "The explosion enhancement of methane-air mixtures by ethylene in a confined chamber," Energy, Elsevier, vol. 214(C).
    6. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    7. Ku, J.W. & Ahn, Y.J. & Kim, H.K. & Kim, Y.H. & Kwon, O.C., 2020. "Propagation and emissions of premixed methane-ammonia/air flames," Energy, Elsevier, vol. 201(C).
    8. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    9. Wang, Siqi & Chong, Cheng Tung & Xie, Tian & Józsa, Viktor & Ng, Jo-Han, 2023. "Ammonia/methane dual-fuel injection and Co-firing strategy in a swirl flame combustor for pollutant emissions control," Energy, Elsevier, vol. 281(C).
    10. Kang, Yinhu & Wang, Qiang & Zhang, Pengyuan & Liu, Congcong & Lu, Xiaofeng & Wang, Quanhai, 2020. "Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames," Energy, Elsevier, vol. 193(C).
    11. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    12. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    13. Ku, Jae Won & Choi, Sun & Kim, Hee Kyung & Lee, Seungro & Kwon, Oh Chae, 2018. "Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames," Energy, Elsevier, vol. 165(PA), pages 314-325.
    14. Shi, Guodong & Li, Pengfei & Li, Kesheng & Hu, Fan & Liu, Qian & Zhou, Haoyu & Liu, Zhaohui, 2023. "Insight into NOx formation characteristics of ammonia oxidation in N2 and H2O atmospheres," Energy, Elsevier, vol. 285(C).
    15. Wang, Shuo & Xiao, Guoqing & Feng, Yu & Mi, Hongfu, 2023. "Investigation of premixed hydrogen/methane flame propagation and kinetic characteristics for continuous obstacles with gradient barrier ratio," Energy, Elsevier, vol. 267(C).
    16. Dai, Huaming & Yin, Hepeng & Zhai, Cheng, 2022. "Experimental investigation on the inhibition of coal dust deflagration by the composite inhibitor of floating bead and melamine cyanurate," Energy, Elsevier, vol. 261(PA).
    17. Lee, Seungro & Ha, Heonrok & Dunn-Rankin, Derek & Kwon, Oh Chae, 2017. "Effects of pressure on structure and extinction limits of counterflow nonpremixed water-laden methane/air flames," Energy, Elsevier, vol. 134(C), pages 545-553.
    18. Maria Grazia De Giorgi & Antonio Ficarella & Donato Fontanarosa & Elisa Pescini & Antonio Suma, 2020. "Investigation of the Effects of Plasma Discharges on Methane Decomposition for Combustion Enhancement of a Lean Flame," Energies, MDPI, vol. 13(6), pages 1-19, March.
    19. Lu, Zhen & Ye, Jianpeng & Gui, Yong & Lu, Tianlong & Shi, Lei & An, Yanzhao & Wang, Tianyou, 2023. "Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy," Energy, Elsevier, vol. 276(C).
    20. Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:237:y:2021:i:c:s036054422101923x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.