IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032522.html
   My bibliography  Save this article

Swarm intelligence-based MPPT design for PV systems under diverse partial shading conditions

Author

Listed:
  • Kishore, D.J. Krishna
  • Mohamed, M.R.
  • Sudhakar, K.
  • Peddakapu, K.

Abstract

The photovoltaic (PV) system has attracted attention in recent years for generating more power and freer from pollution and being eco-friendly to the environment. Nonetheless, the PV system faces many consequences under partial shading (PS) on account of the non-linear nature of the environment. Various traditional methods are used to solve the difficulties of the PV system. However, these methods have oscillations around global maxima peak power (GMPP) and are not able to deliver accurate outcomes when the system becomes complex. Therefore, the combination of teaching-learning (TL) and artificial bee colony (ABC) called TLABC are hybridized in this work for mitigating the oscillations around the GMPP. To find the effectiveness of the proposed method, it can be evaluated with other methods such as PSO, IGWO, MFO, and SSA. As per simulation outcomes, the proposed TLABC shows greater performance in terms of Standard Deviation (SD), Mean Absolute Error (MAE), Successful rate (Suc. Rate), and efficiency are 3.95, 0.13, 98.88 and 99.89% respectively. Furthermore, the suggested system is evolved in the PV laboratory and tested in four different cases for validating the system performance with simulation outcomes. It is found that the suggested TLABC method ensures a greater performance than other studied methods.

Suggested Citation

  • Kishore, D.J. Krishna & Mohamed, M.R. & Sudhakar, K. & Peddakapu, K., 2023. "Swarm intelligence-based MPPT design for PV systems under diverse partial shading conditions," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032522
    DOI: 10.1016/j.energy.2022.126366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    2. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    3. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    4. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    5. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    6. Adedoyin, Festus Fatai & Ozturk, Ilhan & Agboola, Mary Oluwatoyin & Agboola, Phillips O. & Bekun, Festus Victor, 2021. "The implications of renewable and non-renewable energy generating in Sub-Saharan Africa: The role of economic policy uncertainties," Energy Policy, Elsevier, vol. 150(C).
    7. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    8. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    9. Ahmad, Riaz & Murtaza, Ali F. & Sher, Hadeed Ahmed, 2019. "Power tracking techniques for efficient operation of photovoltaic array in solar applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 82-102.
    10. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    11. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    12. Guo, Lei & Meng, Zhuo & Sun, Yize & Wang, Libiao, 2018. "A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition," Energy, Elsevier, vol. 144(C), pages 501-514.
    13. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Hossain, M.Z. & Rahim, N.A. & Selvaraj, Jeyraj a/l, 2018. "Recent progress and development on power DC-DC converter topology, control, design and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 205-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Sharma, Renu, 2023. "An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading," Energy, Elsevier, vol. 282(C).
    2. Edwige Raissa Mache Kengne & Alain Soup Tewa Kammogne & Martin Siewe Siewe & Thomas Tatietse Tamo & Ahmad Taher Azar & Ahmed Redha Mahlous & Mohamed Tounsi & Zafar Iqbal Khan, 2023. "Bifurcation Analysis of a Photovoltaic Power Source Interfacing a Current-Mode-Controlled Boost Converter with Limited Current Sensor Bandwidth for Maximum Power Point Tracking," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    3. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    2. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    3. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    4. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    5. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    8. Ehtisham Lodhi & Fei-Yue Wang & Gang Xiong & Ghulam Ali Mallah & Muhammad Yaqoob Javed & Tariku Sinshaw Tamir & David Wenzhong Gao, 2021. "A Dragonfly Optimization Algorithm for Extracting Maximum Power of Grid-Interfaced PV Systems," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    9. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    10. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    11. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    12. Sheik Mohammed, S. & Devaraj, D. & Imthias Ahamed, T.P., 2016. "A novel hybrid Maximum Power Point Tracking Technique using Perturb & Observe algorithm and Learning Automata for solar PV system," Energy, Elsevier, vol. 112(C), pages 1096-1106.
    13. Mao, Mingxuan & Zhang, Li & Duan, Pan & Duan, Qichang & Yang, Ming, 2018. "Grid-connected modular PV-Converter system with shuffled frog leaping algorithm based DMPPT controller," Energy, Elsevier, vol. 143(C), pages 181-190.
    14. Hussain Bassi & Zainal Salam & Mohd Zulkifli Ramli & Hatem Sindi & Muhyaddin Rawa, 2019. "Hardware Approach to Mitigate the Effects of Module Mismatch in a Grid-connected Photovoltaic System: A Review," Energies, MDPI, vol. 12(22), pages 1-25, November.
    15. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    16. Dalia Yousri & Thanikanti Sudhakar Babu & Dalia Allam & Vigna. K. Ramachandaramurthy & Eman Beshr & Magdy. B. Eteiba, 2019. "Fractional Chaos Maps with Flower Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-27, September.
    17. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Refaat, Ahmed & Ali, Qays Adnan & Elsakka, Mohamed Mohamed & Elhenawy, Yasser & Majozi, Thokozani & Korovkin, Nikolay V. & Elfar, Medhat Hegazy, 2024. "Extraction of maximum power from PV system based on horse herd optimization MPPT technique under various weather conditions," Renewable Energy, Elsevier, vol. 220(C).
    19. Muhammad Hafeez Mohamed Hariri & Mohd Khairunaz Mat Desa & Syafrudin Masri & Muhammad Ammirrul Atiqi Mohd Zainuri, 2020. "Grid-Connected PV Generation System—Components and Challenges: A Review," Energies, MDPI, vol. 13(17), pages 1-28, August.
    20. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.