IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222025348.html
   My bibliography  Save this article

A new skeletal kinetic model for methanol/ n-heptane dual fuels under engine-like conditions

Author

Listed:
  • Liu, Shuqi
  • Sun, Ting
  • Zhou, Lei
  • Jia, Ming
  • Zhao, Wanhui
  • Wei, Haiqiao

Abstract

In dual-fuel engines, diesel is typically used to initiate the ignition of methanol, resulting in a turbulent spray flame. However, the lack of skeletal or reduced mechanisms for methanol/n-heptane blends limits the further research of dual-fuel combustion. Therefore, a skeletal methanol/n-heptane mechanism including 52 species and 182 reactions was proposed based on the decoupling method. Firstly, it was validated by the recent experiments for blends and compared with several mechanisms. Good agreement between the predicted and measured results was obtained in terms of the ignition delay time, laminar flame speed, and species distributions for pure n-heptane and methanol as well as blends. The new mechanism shows improvements on the negative temperature coefficient (NTC) behavior and the low-temperature ignition for blends compared with other mechanisms. Secondly, the effect of methanol on n-heptane decomposition was investigated based on kinetic analysis. Results showed that methanol competes OH with n-heptane at low temperatures, mainly prolonging the second-stage ignition process. At high temperatures, more HO2 was produced via CH3OH→CH2OH→CH2O + HO2. The existence of methanol also removes the NTC regime toward lower temperatures at intermediate temperatures. Methanol/n-heptane dual fuels no longer exhibit NTC behaviors with high concentration methanol.

Suggested Citation

  • Liu, Shuqi & Sun, Ting & Zhou, Lei & Jia, Ming & Zhao, Wanhui & Wei, Haiqiao, 2023. "A new skeletal kinetic model for methanol/ n-heptane dual fuels under engine-like conditions," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025348
    DOI: 10.1016/j.energy.2022.125648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222025348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    2. Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).
    3. Zhennan Zhu & Kun Liang & Xinwen Chen & Zhongwei Meng & Wenbin He & Hao Song, 2020. "Laminar Flame Characteristics of Premixed Methanol–Water–Air Mixture," Energies, MDPI, vol. 13(24), pages 1-13, December.
    4. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    5. Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    7. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    8. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    9. Santhosh, K. & Kumar, G.N., 2021. "Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends," Energy, Elsevier, vol. 214(C).
    10. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    11. Michal Puškár, 2022. "Advanced System Determined for Utilisation of Sustainable Biofuels in High-Performance Sport Applications," Sustainability, MDPI, vol. 14(11), pages 1-11, May.
    12. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    13. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    14. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).
    15. García, Duban & Ramos, Ángel & Rodríguez-Fernández, José & Bustamante, Felipe & Alarcón, Edwin & Lapuerta, Magín, 2020. "Impact of oxyfunctionalized turpentine on emissions from a Euro 6 diesel engine," Energy, Elsevier, vol. 201(C).
    16. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    17. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    19. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    20. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222025348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.