IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6713-d828464.html
   My bibliography  Save this article

Advanced System Determined for Utilisation of Sustainable Biofuels in High-Performance Sport Applications

Author

Listed:
  • Michal Puškár

    (Faculty of Mechanical Engineering, TU Košice, Letná 9, 040 01 Košice, Slovakia)

Abstract

It is of current importance to reach carbon neutrality in various transport sectors as soon as possible, with regard to the fact that transport, characterized by the utilization of piston combustion engines, is one of the main polluters in urban agglomerations. Piston combustion engine pollution also significantly influences the quality of the living environment and human health. The application of biofuels containing bioethanol or biodiesel essentially contributes to the reduction of air pollution caused by exhaust gases, also taking into consideration the renewability of these fuels. Therefore, the modification of spark ignited engines is necessary for the correct operation of ethanol combustion and to remove risks during operation and combustion, mainly the possibility of detonation combustion. To date, there has been a gradual development of engines intended for the combustion of the fuel mixture gasoline–bioethanol, mainly the fuel E85. This fuel mixture contains 85% ethanol and 15% gasoline. This paper is focused on construction modifications of a specific combustion engine, which operates with a two-stroke working cycle, which is predominantly intended for installation in category L motor-sport vehicles and kart race vehicles. A new construction solution specifically for this engine was developed and consequently patented. The results obtained while testing this engine in real racing conditions confirmed the correctness and purposefulness of the proposed engine concept.

Suggested Citation

  • Michal Puškár, 2022. "Advanced System Determined for Utilisation of Sustainable Biofuels in High-Performance Sport Applications," Sustainability, MDPI, vol. 14(11), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6713-:d:828464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hao & Su, Xin & He, Jingjing & Xie, Bin, 2019. "Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends," Energy, Elsevier, vol. 167(C), pages 297-311.
    2. Zhang, Miaomiao & Hong, Wei & Xie, Fangxi & Liu, Yu & Su, Yan & Li, Xiaoping & Liu, Haifeng & Fang, Kangning & Zhu, Xinbo, 2019. "Effects of diluents on cycle-by-cycle variations in a spark ignition engine fueled with methanol," Energy, Elsevier, vol. 182(C), pages 1132-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
    2. Ireneusz Pielecha & Filip Szwajca, 2023. "Lean Methane Mixtures in Turbulent Jet Ignition Combustion System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    3. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    4. Taghavifar, Hadi & Mazari, Farhad, 2022. "1D diesel engine cycle modeling integrated with MOPSO optimization for improved NOx control and pressure boost," Energy, Elsevier, vol. 247(C).
    5. Duan, Xiongbo & Feng, Lining & Liu, Haibo & Jiang, Pengfei & Chen, Chao & Sun, Zhiqiang, 2023. "Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions," Energy, Elsevier, vol. 282(C).
    6. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    7. Zhennan Zhu & Kun Liang & Xinwen Chen & Zhongwei Meng & Wenbin He & Hao Song, 2020. "Laminar Flame Characteristics of Premixed Methanol–Water–Air Mixture," Energies, MDPI, vol. 13(24), pages 1-13, December.
    8. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    10. Zhu, Zengqiang & Mu, Zhiqiang & Wei, Yanju & Du, Ruiheng & Guan, Wei & Liu, Shenghua, 2022. "Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine," Energy, Elsevier, vol. 254(PA).
    11. Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Fekadu Mosisa Wako & Gianmaria Pio & Ernesto Salzano, 2020. "The Effect of Hydrogen Addition on Low-Temperature Combustion of Light Hydrocarbons and Alcohols," Energies, MDPI, vol. 13(15), pages 1-14, July.
    13. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    14. Guan, Wei & Gu, Jinkai & Pan, Xiubin & Pan, Mingzhang & Wang, Xinyan & Zhao, Hua & Tan, Dongli & Fu, Changcheng & Pedrozo, Vinícius B. & Zhang, Zhiqing, 2024. "Improvement of the light-load combustion control strategy for a heavy-duty diesel engine fueled with diesel/methonal by RSM-NSGA III," Energy, Elsevier, vol. 297(C).
    15. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    16. Santhosh, K. & Kumar, G.N., 2021. "Effect of injection time on combustion, performance and emission characteristics of direct injection CI engine fuelled with equi-volume of 1-hexanol/diesel blends," Energy, Elsevier, vol. 214(C).
    17. Shi, Zhicheng & Lee, Chia-fon & Wu, Han & Li, Haiying & Wu, Yang & Zhang, Lu & Bo, Yaqing & Liu, Fushui, 2020. "Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions," Applied Energy, Elsevier, vol. 262(C).
    18. Ma, Shuaifei & Guo, Qi & Wei, Jiangjun & Yin, Zenghui & Zhuang, Yuan & Zhang, Yu & Dai, Qian & Qian, Yejian, 2024. "Analyzing the effect of carbon nanoparticles on the combustion performance and emissions of a DI diesel engine fueled with the diesel-methanol blend," Energy, Elsevier, vol. 300(C).
    19. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    20. Gong, Changming & Yi, Lin & Wang, Kang & Huang, Kuo & Liu, Fenghua, 2020. "Numerical study on electron energy distribution characteristics and evolution of active particles of methanol-air mixture by non-equilibrium plasma," Energy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6713-:d:828464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.