IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222024768.html
   My bibliography  Save this article

Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation

Author

Listed:
  • Nie, Wen
  • Cha, Xingpeng
  • Bao, Qiu
  • Peng, Huitian
  • Xu, Changwei
  • Zhang, Shaobo
  • Zhang, Xu
  • Ma, Qingxin
  • Guo, Cheng
  • Yi, Shixing
  • Jiang, Chenwang

Abstract

To solve the problem of high-concentration coal dust pollution in a fully mechanized working face, and based on the principle of mechanical wind-assisted negative pressure suction of dust-laden air flow combined with spray dust reduction, a new wind-assisted spray device was investigated. The nozzle of the device was optimized through experimental investigation of the macroscopic characteristics of the spray field. Based on the actual situation of the fully mechanized mining face, a numerical simulation of the wind-assisted spray device was carried out and combined with an orthogonal test. It was shown that when the spray device deviates by 30°, the spray pressure is 6 MPa, and the air output is 90 l/min, resulting in a more efficient spray field. Finally, the wind-assisted spray device was used in the 22,104 fully-mechanized mining face of Shangwan Coal Mine, China, and the dust concentration was monitored at measuring points before and after the spraying device was switched on. The concentration of total dust and respirable dust at the shearer driver's position decreased to 104.2 mg/m³ and 68.3 mg/m³, respectively, and the dust removal efficiency reached 88.31% and 83.45%, respectively, which effectively suppressed the high-concentration coal dust pollution in the working face.

Suggested Citation

  • Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024768
    DOI: 10.1016/j.energy.2022.125590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222024768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Dongling & Zhou, Ping & Zhou, Chenn Q., 2019. "Evaluation of pulverized coal utilization in a blast furnace by numerical simulation and grey relational analysis," Applied Energy, Elsevier, vol. 250(C), pages 1686-1695.
    2. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    3. Du, Tao & Nie, Wen & Chen, Dawei & Xiu, Zihao & Yang, Bo & Liu, Qiang & Guo, Lidian, 2020. "CFD modeling of coal dust migration in an 8.8-meter-high fully mechanized mining face," Energy, Elsevier, vol. 212(C).
    4. Xu, Jiuping & Gao, Wen & Xie, Heping & Dai, Jingqi & Lv, Chengwei & Li, Meihui, 2018. "Integrated tech-paradigm based innovative approach towards ecological coal mining," Energy, Elsevier, vol. 151(C), pages 297-308.
    5. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
    6. Xu, Changwei & Nie, Wen & Liu, Zhiqiang & Peng, Huitian & Yang, Shibo & Liu, Qiang, 2019. "Multi-factor numerical simulation study on spray dust suppression device in coal mining process," Energy, Elsevier, vol. 182(C), pages 544-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Wen & Li, Jianjun & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Cha, Xingpeng & Yi, Shixing & Mwabaima, Felicie Ilele, 2024. "Study of spray atomization law and dust suppression effect of a wet dust catcher on a hydraulic support," Energy, Elsevier, vol. 305(C).
    2. Jiang, Bingyou & Liu, Zhuang & Zhao, Yang & Zhang, Xiaoyi & Wang, Xiao-Han & Ji, Ben & Zhang, Yi & Huang, Jinshan, 2024. "Development of an eco-friendly dust suppressant based on modified pectin: experimental and theoretical investigations," Energy, Elsevier, vol. 289(C).
    3. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Mingxuan & Lv, Lianhong & Wu, Jing & Wang, Shen & Zhang, Nan & Bai, Zihan & Luo, Hong, 2022. "Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model," Energy, Elsevier, vol. 251(C).
    2. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    3. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    4. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    5. Cai, Peng & Liu, Zhenyi & Li, Pengliang & Zhao, Yao & Li, Mingzhi & Li, Ranran & Wang, Chen & Xiu, Zihao, 2023. "Effects of fuel component, airflow field and obstacles on explosion characteristics of hydrogen/methane mixtures fuel," Energy, Elsevier, vol. 265(C).
    6. Sheng Wang & Xuelong Li & Qizhi Qin, 2022. "Study on Surrounding Rock Control and Support Stability of Ultra-Large Height Mining Face," Energies, MDPI, vol. 15(18), pages 1-20, September.
    7. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    8. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    9. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    10. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    11. Yang, Sheng & Zhang, Lu & Xie, Nan & Gu, Zhaohui & Liu, Zhiqiang, 2021. "Thermodynamic analysis of a semi-lean solution process for energy saving via rectisol wash technology," Energy, Elsevier, vol. 226(C).
    12. Liu, Yisheng & Yang, Meng & Cheng, Feiyu & Tian, Jinzhao & Du, Zhuoqun & Song, Pengbo, 2022. "Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method," Energy, Elsevier, vol. 256(C).
    13. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    14. Hanbin Liu & Yujing Yang & Wenting Jiao & Shaobin Wang & Fangqin Cheng, 2022. "A New Assessment Method for the Redevelopment of Closed Coal Mine—A Case Study in Shanxi Province in China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    15. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    16. Yinnan He & Ruxiang Qin & Bangjun Wang, 2023. "On the Club Convergence in China’s Provincial Coal Consumptions: Evidence from a Nonlinear Time-Varying Factor Model," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    17. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    18. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    19. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    20. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222024768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.