IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223034126.html
   My bibliography  Save this article

Development of an eco-friendly dust suppressant based on modified pectin: experimental and theoretical investigations

Author

Listed:
  • Jiang, Bingyou
  • Liu, Zhuang
  • Zhao, Yang
  • Zhang, Xiaoyi
  • Wang, Xiao-Han
  • Ji, Ben
  • Zhang, Yi
  • Huang, Jinshan

Abstract

This study aims to develop eco-friendly composite dust suppressants to mitigate the adverse impact of coal mine dust on worker health and the environment. An environmentally friendly dust suppressant with bonding and wetting effects was prepared by combining modified pectin as a binder and a non-toxic surfactant as a wetting agent. Optimal ratios of sodium carboxylate ethoxylate sulfate (LMES), isomeric alcohol ethoxylate (XL-70), and modified pectin were determined through experiments. The modified pectin exhibited stronger wetting properties on coal powder due to its increased hydrophilicity. Wetting performance tests confirmed its excellent performance. Film-forming and scanning electron microscope tests demonstrated the dust suppressant's ability to bond with coal dust, resulting in a smooth surface and closely connected particles. Environmental tests showed its non-toxicity and degradability. Spraying dust reduction tests revealed a significant average increase of 40.51 % in dust reduction rate compared to water spraying, effectively lowering dust concentration. These findings have practical implications for the development of eco-friendly composite dust suppressants and controlling underground dust in coal mines, benefiting worker health and environmental sustainability.

Suggested Citation

  • Jiang, Bingyou & Liu, Zhuang & Zhao, Yang & Zhang, Xiaoyi & Wang, Xiao-Han & Ji, Ben & Zhang, Yi & Huang, Jinshan, 2024. "Development of an eco-friendly dust suppressant based on modified pectin: experimental and theoretical investigations," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034126
    DOI: 10.1016/j.energy.2023.130018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223034126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hui & Xie, Jingna & Xie, Jun & Jiang, Hehe & Wen, Yongzan & Huang, Wanpeng & Wang, Gang & Jiang, Bingyou & Zhang, Chao, 2022. "Effect of critical micelle concentration of imidazole ionic liquids in aqueous solutions on the wettability of anthracite," Energy, Elsevier, vol. 239(PB).
    2. Nie, Wen & Cha, Xingpeng & Bao, Qiu & Peng, Huitian & Xu, Changwei & Zhang, Shaobo & Zhang, Xu & Ma, Qingxin & Guo, Cheng & Yi, Shixing & Jiang, Chenwang, 2023. "Study on dust pollution suppression of mine wind-assisted spray device based on orthogonal test and CFD simulation," Energy, Elsevier, vol. 263(PB).
    3. Ming Li & Xinzhu Song & Gang Li & Jiao Tang & Zhi Li, 2022. "Experimental Study on Dust Suppression Effect and Performance of New Nano-Composite Dust Suppressant," IJERPH, MDPI, vol. 19(10), pages 1-9, May.
    4. Jiang, Bingyou & Ji, Ben & Yuan, Liang & Yu, Chang-Fei & Tao, Wenhan & Zhou, Yu & Wang, Haoyu & Wang, Xiao-Han & Liao, Maolin, 2023. "Experimental and molecular dynamics simulation study of the ionic liquids’ chain-length on wetting of bituminous coal," Energy, Elsevier, vol. 283(C).
    5. Gan, Jian & Wang, Deming & Xiao, Zhongmin & Wang, Ya-nan & Zhang, Kang & Zhu, Xiaolong & Li, Shuailong, 2023. "Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal," Energy, Elsevier, vol. 271(C).
    6. Xu, Changwei & Nie, Wen & Peng, Huitian & Zhang, Shaobo & Liu, Fei & Yi, Shixing & Cha, Xingpeng & Mwabaima, Felicie Ilele, 2023. "Numerical simulation of the dynamic wetting of coal dust by spray droplets," Energy, Elsevier, vol. 270(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Bingyou & Ji, Ben & Yuan, Liang & Yu, Chang-Fei & Tao, Wenhan & Zhou, Yu & Wang, Haoyu & Wang, Xiao-Han & Liao, Maolin, 2023. "Experimental and molecular dynamics simulation study of the ionic liquids’ chain-length on wetting of bituminous coal," Energy, Elsevier, vol. 283(C).
    2. Nie, Wen & Jiang, Chenwang & Sun, Ning & Guo, Lidian & Xue, Qianqian & Liu, Qiang & Liu, Chengyi & Cha, Xingpeng & Yi, Shixing, 2023. "Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines," Energy, Elsevier, vol. 278(PA).
    3. Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
    4. Nie, Wen & Jiang, Chenwang & Liu, Qiang & Guo, Lidian & Hua, Yun & Zhang, Haonan & Jiang, Bingyou & Zhu, Zilian, 2024. "Study of highly efficient control and dust removal system for double-tunnel boring processes in coal mines," Energy, Elsevier, vol. 289(C).
    5. Gan, Jian & Wang, Deming & Xiao, Zhongmin & Wang, Ya-nan & Zhang, Kang & Zhu, Xiaolong & Li, Shuailong, 2023. "Experimental and molecular dynamics investigations of the effects of ionic surfactants on the wettability of low-rank coal," Energy, Elsevier, vol. 271(C).
    6. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    7. Jianguo Liu & Tianyang Wang & Longzhe Jin & Gang Li & Shu Wang & Yixuan Wei & Shengnan Ou & Yapeng Wang & Jingge Xu & Minglei Lin & Jiahui Wang & Xianfeng Liu, 2022. "Suppression Characteristics and Mechanism of Molasses Solution on Coal Dust: A Low-Cost and Environment-Friendly Suppression Method in Coal Mines," IJERPH, MDPI, vol. 19(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.