IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023283.html
   My bibliography  Save this article

Numerical study on the asymmetrical jets formation from active pre-chamber under super-lean combustion conditions

Author

Listed:
  • Zhao, Deyang
  • An, Yanzhao
  • Pei, Yiqiang
  • Shi, Hao
  • Wang, Kun

Abstract

This paper aims to investigate the mechanism of the asymmetric jets of the TJI system. We analyzed the effects of fuel injection and air flows in pre-chamber and main chamber, initial flame kernel, and evolution of turbulent hot jets. The evaluation indexes of asymmetric jet were proposed. The results show when adding fuel injection into the homogeneous PC with off-central spark plug, the average relative velocity range and average degree of velocity non-uniformity increased by 50.8% and 32.8%, which increased by 75.1% and 46.7% for the real engine condition with intake airflow and fuel injection. A similar phenomenon was observed for central spark plug settings but with a much stronger impact on the asymmetry of jets velocity as proved by the increment of 138.5% and 93.2% under real engine condition. The asymmetric jets can be divided into the asymmetry of jets size and the asymmetry moment of flame jets. The former of different jets’ velocity is attributed to the tumble flow in main chamber. The latter is attributed to the irregular flame propagation caused by the off-central ignition and the uneven mixture distribution in pre-chamber. The optimization strategies to efficiency utilize the flow exchange between PC and MC were proposed.

Suggested Citation

  • Zhao, Deyang & An, Yanzhao & Pei, Yiqiang & Shi, Hao & Wang, Kun, 2023. "Numerical study on the asymmetrical jets formation from active pre-chamber under super-lean combustion conditions," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023283
    DOI: 10.1016/j.energy.2022.125446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    2. Zhao, Zhenfeng & Cui, Huasheng, 2022. "Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline," Energy, Elsevier, vol. 239(PD).
    3. Li, Hong-Meng & Li, Guo-Xiu & Jiang, Yan-Huan & Li, Lei & Li, Fu-Sheng, 2018. "Flame stability and propagation characteristics for combustion in air for an equimolar mixture of hydrogen and carbon monoxide in turbulent conditions," Energy, Elsevier, vol. 157(C), pages 76-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
    2. Hu, Junnan & Pei, Yiqiang & An, Yanzhao & Zhao, Deyang & Zhang, Zhiyong & Sun, Jian & Gao, Dingwei, 2023. "Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle," Energy, Elsevier, vol. 282(C).
    3. Leonid Plotnikov, 2023. "Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning," Mathematics, MDPI, vol. 11(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Zhang, Chao, 2021. "Premixed CO/air combustion in a closed duct with inhibition," Energy, Elsevier, vol. 230(C).
    2. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    3. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    4. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    5. Shilong, Zhao & Yuxin, Fan, 2020. "Experimental and numerical study on fuel distribution and flame expansion of the enhanced flame holding devices," Energy, Elsevier, vol. 203(C).
    6. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    7. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    8. Zhao, Haoran & Wang, Jinhua & Cai, Xiao & Dai, Hongchao & Liu, Xiao & Li, Gang & Huang, Zuohua, 2023. "On accelerative propagation of premixed hydrogen/air laminar and turbulent expanding flames," Energy, Elsevier, vol. 283(C).
    9. Liu, Jinlong & Wang, Bosen & Meng, Zhongwei & Liu, Zhentao, 2023. "An examination of performance deterioration indicators of diesel engines on the plateau," Energy, Elsevier, vol. 262(PB).
    10. Yontar, Ahmet Alper, 2020. "A comparative study to evaluate the effects of pre-chamber jet ignition for engine characteristics and emission formations at high speed," Energy, Elsevier, vol. 210(C).
    11. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    12. Sun, Z.Y. & LIU, Shao-Yan, 2022. "A comparative study on the turbulent explosion characteristics of syngas between CO-enriched and H2-enriched," Energy, Elsevier, vol. 241(C).
    13. Zhipeng Li & Qiang Zhang & Fujun Zhang & Hongbo Liang & Yu Zhang, 2023. "Investigation of Effect of Nozzle Numbers on Diesel Engine Performance Operated at Plateau Environment," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.