IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222018254.html
   My bibliography  Save this article

Effects of the ZSM-5 zeolites on hydrocarbon emission control of gasoline engine under cold start

Author

Listed:
  • Feng, Changling
  • Deng, Yuanwang
  • E, Jiaqiang
  • Han, Dandan
  • Tan, Yan
  • Luo, Xiaoyu

Abstract

The feasibility of ZSM-5 zeolite for controlling hydrocarbon (HC) emissions during cold start period of gasoline engine was studied by temperature programmed desorption (TPD) experiment and molecular simulation (MS). Acetylene, 1-butene, propylene, ethylene, acetaldehyde and benzene molecules were selected as representative HCs based on the HC emission components of gasoline engine cold start experiment. TPD experiment was carried on commercial ZSM-5, and desorption intensity curve of ZSM-5 zeolite for main cold start hydrocarbons was obtained. TPD results indicated that ZSM-5 zeolite can retain most of the hydrocarbons after 472 K, and the overall desorption intensity on ZSM-5 zeolite is acetaldehyde>1-butene > acetylene. Then adsorption and diffusion properties of the six main cold start hydrocarbon components on Na-ZSM-5 zeolite with different Si/Al ratio were studied by grand canonical Monte Carlo (GCMC) method and canonical ensemble Molecular Dynamics (MD) method. The results showed that the adsorption and diffusion of single-component hydrocarbons on ZSM-5 zeolite were affected by the number of exchange cations of zeolite, environment temperature, diameter of HC molecules and covalent bond types of HC molecules, and the adsorption capacity and diffusion coefficient were also affected by the competitive effect between the HC components. In competitive adsorption, molecules with large diameters such as acetaldehyde, 1-butene and benzene occupied the main adsorption sites of zeolite, so the adsorption capacity of these three HC molecules was large, while the adsorption capacity of smaller molecules such as ethylene, acetylene and propylene were small.

Suggested Citation

  • Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan & Luo, Xiaoyu, 2022. "Effects of the ZSM-5 zeolites on hydrocarbon emission control of gasoline engine under cold start," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018254
    DOI: 10.1016/j.energy.2022.124924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    2. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions," Energy Policy, Elsevier, vol. 38(8), pages 3943-3956, August.
    3. Zhang, Xu & Qi, Tian-yu & Ou, Xun-min & Zhang, Xi-liang, 2017. "The role of multi-region integrated emissions trading scheme: A computable general equilibrium analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1860-1868.
    4. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    5. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    6. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    8. Cai, Tao & Zhao, Dan, 2022. "Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Feng, Changling & Deng, Yuanwang & Chen, Lehan & Han, Wei & E, Jiaqiang & Wei, Kexiang & Han, Dandan & Zhang, Bin, 2022. "Hydrocarbon emission control of a hydrocarbon adsorber and converter under cold start of the gasoline engine," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    2. Yu, Junjie & Kou, Chuanfu & Ma, Yinjie & E, Jiaqiang & Feng, Changling, 2024. "Effect analysis on hydrocarbon adsorption enhancement of different zeolites in cold start of gasoline engine based on Monte Carlo method," Energy, Elsevier, vol. 294(C).
    3. Han, Dandan & E, Jiaqiang & Feng, Changling & Han, Chang & Kou, Chuanfu & Tan, Yan & Peng, Yanchun & Wei, Lingyun, 2024. "Experimental and simulation investigation on the different iron content beta zeolite for controlling the cold-start hydrocarbon emission from a gasoline vehicle," Energy, Elsevier, vol. 294(C).
    4. Feng, Changling & Deng, Yuanwang & E, Jiaqiang & Han, Dandan & Tan, Yan, 2023. "Effect analysis on hydrocarbon adsorption enhancement of ZSM-5 zeolite modified by transition metal ions in cold start of gasoline engine," Energy, Elsevier, vol. 267(C).
    5. Han, Dandan & Deng, Yuanwang & E, Jiaqiang & Feng, Changling & Tan, Yan, 2023. "Experimental and simulation study on Fe-beta controlling of hydrocarbon emission during cold start of gasoline vehicle world light vehicle test cycle," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Dandan & Deng, Yuanwang & E, Jiaqiang & Feng, Changling & Tan, Yan, 2023. "Experimental and simulation study on Fe-beta controlling of hydrocarbon emission during cold start of gasoline vehicle world light vehicle test cycle," Energy, Elsevier, vol. 277(C).
    2. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    3. Han, Dandan & E, Jiaqiang & Feng, Changling & Han, Chang & Kou, Chuanfu & Tan, Yan & Peng, Yanchun & Wei, Lingyun, 2024. "Experimental and simulation investigation on the different iron content beta zeolite for controlling the cold-start hydrocarbon emission from a gasoline vehicle," Energy, Elsevier, vol. 294(C).
    4. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    5. Tianduo Peng & Sheng Zhou & Zhiyi Yuan & Xunmin Ou, 2017. "Life Cycle Greenhouse Gas Analysis of Multiple Vehicle Fuel Pathways in China," Sustainability, MDPI, vol. 9(12), pages 1-24, November.
    6. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    8. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    9. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    10. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    11. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    12. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang & Liu, Lei, 2012. "Life cycle assessment of a solar combined cooling heating and power system in different operation strategies," Applied Energy, Elsevier, vol. 92(C), pages 843-853.
    13. Lin, Chengtao & Wu, Tian & Ou, Xunmin & Zhang, Qian & Zhang, Xu & Zhang, Xiliang, 2013. "Life-cycle private costs of hybrid electric vehicles in the current Chinese market," Energy Policy, Elsevier, vol. 55(C), pages 501-510.
    14. Jing, You-Yin & Bai, He & Wang, Jiang-Jiang, 2012. "Multi-objective optimization design and operation strategy analysis of BCHP system based on life cycle assessment," Energy, Elsevier, vol. 37(1), pages 405-416.
    15. Yao, Mingfa & Liu, Haifeng & Feng, Xuan, 2011. "The development of low-carbon vehicles in China," Energy Policy, Elsevier, vol. 39(9), pages 5457-5464, September.
    16. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    17. Zhang, Bin & Li, Xuewei & Wan, Qin & Liu, Bo & Jia, Guohai & Yin, Zibin, 2023. "Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine," Energy, Elsevier, vol. 262(PA).
    18. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    19. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    20. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222018254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.