IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp807-817.html
   My bibliography  Save this article

Effect of blade thickness on the hydraulic performance of a Francis hydro turbine model

Author

Listed:
  • Kim, Seung-Jun
  • Choi, Young-Seok
  • Cho, Yong
  • Choi, Jong-Woong
  • Kim, Jin-Hyuk

Abstract

Francis turbines are the most commonly used turbines for hydroelectric power generation. Preliminary studies to verify turbine designs are often performed with small-scale models; however, when the runner blade of a full-size turbine is geometrically scaled down to prepare a model for evaluating the design variables and performance characteristics, the blades become very thin and difficult to manufacture. Hence, the blockage effect of the runner blade should be considered to find a suitable blade thickness that satisfies the required hydraulic performance. Furthermore, a clear understanding of the blockage ratio at the highest efficiency point and off-design condition is required to investigate different blade thicknesses and performance characteristics. Here, the blockage effect of the runner blade on the hydraulic performance and internal flow characteristics of a 300-class Francis hydro turbine was investigated. Three-dimensional Reynolds-averaged Navier–Stokes calculations were performed with a shear stress transport turbulence model to analyze the internal flow characteristics near the runner blade and compare the blockage effect with various blade thicknesses on major performance parameters such as the hydraulic efficiency. Flow analyses for the off-design conditions were also performed with various blade thicknesses. The obtained results indicated that the power and efficiency gradually decreased with increasing blockage ratio. The runner head loss increased due to the mismatches between the flow angle and blade angle with changing the inlet velocity triangle components according to blockage ratio. Especially the efficiency of approximate 3.4% decreased as the blockage ratio increased with 12.5%, compared to the reference model. It was verified that the blockage effect significantly affects the design of Francis turbine models.

Suggested Citation

  • Kim, Seung-Jun & Choi, Young-Seok & Cho, Yong & Choi, Jong-Woong & Kim, Jin-Hyuk, 2019. "Effect of blade thickness on the hydraulic performance of a Francis hydro turbine model," Renewable Energy, Elsevier, vol. 134(C), pages 807-817.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:807-817
    DOI: 10.1016/j.renene.2018.11.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenmu Chen & Patrick M. Singh & Young-Do Choi, 2016. "Francis Turbine Blade Design on the Basis of Port Area and Loss Analysis," Energies, MDPI, vol. 9(3), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jiyun & Ge, Zhan & Wu, Hao & Shi, Xudong & Yuan, Fangyang & Yu, Wei & Wang, Dongxiang & Yang, Xinjun, 2022. "Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings," Energy, Elsevier, vol. 256(C).
    2. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    3. Chen, Jinbo & Engeda, Abraham, 2021. "Standard module hydraulic technology: A novel geometrical design methodology and analysis for a low-head hydraulic turbine system, part II: Turbine stator-blade and runner-blade geometry, and off-desi," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seung-Jun Kim & Young-Seok Choi & Yong Cho & Jong-Woong Choi & Jung-Jae Hyun & Won-Gu Joo & Jin-Hyuk Kim, 2020. "Effect of Fins on the Internal Flow Characteristics in the Draft Tube of a Francis Turbine Model," Energies, MDPI, vol. 13(11), pages 1-23, June.
    2. Yu Chen & Jianxu Zhou & Bryan Karney & Qiang Guo & Jian Zhang, 2022. "Analytical Implementation and Prediction of Hydraulic Characteristics for a Francis Turbine Runner Operated at BEP," Sustainability, MDPI, vol. 14(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:807-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.