IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs036054422201249x.html
   My bibliography  Save this article

Optimal dispatching of large-scale electric vehicles into grid based on improved second-order cone

Author

Listed:
  • Yin, WanJun
  • Qin, Xuan
  • Huang, ZhiZhong

Abstract

The disordered charging behavior of large-scale electric vehicles will have an immeasurable impact on the distribution grid. How to simultaneously solve the demand for charging and discharging of large-scale electric vehicles and the safe operation of the distribution grid has been a research hotspot in recent years. In response to this problem, firstly, we mathematically model the problem; secondly, according to the nonlinear characteristics of the optimization model, in order to find the optimal solution accurately and quickly, using the improved second-order cone method to transform it, which solves the problem well:(1) “Where” problem, that is, to find the best nodes to charge and discharge electric vehicles in the distribution grid, (2) “When” problem, that is, when is the best time to charge and discharge electric vehicles, (3) “How” problem, that is, how many electric vehicles are connected to the distribution grid at the right location and the right time. Finally, using the Matlab-based Yalmip modeling tool to call the Cplex mathematical solver to verify the IEEE-33 nodes power distribution system, the results show that the proposed method not only solves the charging and discharging requirements of large-scale electric vehicles, but also ensures the stability of the power grid run.

Suggested Citation

  • Yin, WanJun & Qin, Xuan & Huang, ZhiZhong, 2022. "Optimal dispatching of large-scale electric vehicles into grid based on improved second-order cone," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201249x
    DOI: 10.1016/j.energy.2022.124346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201249X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2017. "Stochastic scheduling of local distribution systems considering high penetration of plug-in electric vehicles and renewable energy sources," Energy, Elsevier, vol. 121(C), pages 480-490.
    2. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    2. Yin, Wanjun & Ji, Jianbo & Wen, Tao & Zhang, Chao, 2023. "Study on orderly charging strategy of EV with load forecasting," Energy, Elsevier, vol. 278(C).
    3. Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).
    4. Aissa Benhammou & Mohammed Amine Hartani & Hamza Tedjini & Hegazy Rezk & Mujahed Al-Dhaifallah, 2023. "Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller," Sustainability, MDPI, vol. 15(7), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    2. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    3. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    4. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    5. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    6. Parinaz Aliasghari & Behnam Mohammadi-Ivatloo & Mehdi Abapour & Ali Ahmadian & Ali Elkamel, 2020. "Goal Programming Application for Contract Pricing of Electric Vehicle Aggregator in Join Day-Ahead Market," Energies, MDPI, vol. 13(7), pages 1-12, April.
    7. Li, Xinyu & Cao, Yue & Yan, Fei & Li, Yuzhe & Zhao, Wanlin & Wang, Yue, 2022. "Towards user-friendly energy supplement service considering battery degradation cost," Energy, Elsevier, vol. 249(C).
    8. Li, Shuangqi & Gu, Chenghong & Zeng, Xianwu & Zhao, Pengfei & Pei, Xiaoze & Cheng, Shuang, 2021. "Vehicle-to-grid management for multi-time scale grid power balancing," Energy, Elsevier, vol. 234(C).
    9. Aree Wangsupphaphol & Surachai Chaitusaney, 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    10. Jong Hui Moon & Han Na Gwon & Gi Ryong Jo & Woo Yeong Choi & Kyung Soo Kook, 2020. "Stochastic Modeling Method of Plug-in Electric Vehicle Charging Demand for Korean Transmission System Planning," Energies, MDPI, vol. 13(17), pages 1-14, August.
    11. Aixin Yang & Guiqing Zhang & Chenlu Tian & Wei Peng & Yechun Liu, 2024. "Charging Behavior Portrait of Electric Vehicle Users Based on Fuzzy C-Means Clustering Algorithm," Energies, MDPI, vol. 17(7), pages 1-26, March.
    12. Wen, Lei & Song, Qianqian, 2023. "ELCC-based capacity value estimation of combined wind - storage system using IPSO algorithm," Energy, Elsevier, vol. 263(PB).
    13. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    14. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing & Shahidehpour, Mohammad, 2021. "Two-stage robust distribution system operation by coordinating electric vehicle aggregator charging and load curtailments," Energy, Elsevier, vol. 226(C).
    15. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    16. Ziqi Zhang & Zhong Chen & Qi Zhao & Puliang Du, 2021. "Multi-Level Cooperative Scheduling Based on Robust Optimization Considering Flexibilities and Uncertainties of ADN and MG," Energies, MDPI, vol. 14(21), pages 1-23, November.
    17. Panda, Deepak Kumar & Halder, Kaushik & Das, Saptarshi & Townley, Stuart, 2024. "Observer based decentralized load frequency control with false data injection attack for specified network quality and delay," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    18. Jing Yang & Jiale Xiong & Yen-Lin Chen & Por Lip Yee & Chin Soon Ku & Manoochehr Babanezhad, 2023. "Improved Golden Jackal Optimization for Optimal Allocation and Scheduling of Wind Turbine and Electric Vehicles Parking Lots in Electrical Distribution Network Using Rosenbrock’s Direct Rotation Strat," Mathematics, MDPI, vol. 11(6), pages 1-23, March.
    19. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    20. Yin, Wanjun & Ji, Jianbo & Qin, Xuan, 2023. "Study on optimal configuration of EV charging stations based on second-order cone," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s036054422201249x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.