IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008750.html
   My bibliography  Save this article

Observer based decentralized load frequency control with false data injection attack for specified network quality and delay

Author

Listed:
  • Panda, Deepak Kumar
  • Halder, Kaushik
  • Das, Saptarshi
  • Townley, Stuart

Abstract

Load frequency control (LFC) aims to stabilize grid frequency fluctuations by countering load disturbances with generation-side controllers. In smart grids, demand response (DR) and electric vehicles (EV) offer alternatives to traditional frequency control, reducing reliance on costly generation-side controllers. These decentralized controls, interconnected through a shared communication medium, form a cyber-physical system, vulnerable to challenges like packet drops and false data injection (FDI) attacks. Additionally, consumer participation in DR introduces significant time delays. This paper derives stability conditions for LFC using a state feedback controller, estimating unobservable states with an observer while accounting for bounded disturbances and noise. This cyber-physical system, involving an observer, controller, and network, is modelled as an observer-based networked control system (NCS) using an asynchronous dynamical system (ADS) approach. The resulting switched system model is used to establish linear matrix inequality (LMI) criteria that ensure stability and determine observer and controller gains under specified packet drop rates, disturbances, and noise. The methodology is tested on various configurations, demonstrating that decentralized EV with LFC and DR improves system response, minimizes frequency fluctuations, and optimizes networked control bandwidth under given conditions.

Suggested Citation

  • Panda, Deepak Kumar & Halder, Kaushik & Das, Saptarshi & Townley, Stuart, 2024. "Observer based decentralized load frequency control with false data injection attack for specified network quality and delay," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008750
    DOI: 10.1016/j.chaos.2024.115323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.