IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222011914.html
   My bibliography  Save this article

Intensification of steam reforming process for off-gas upgrading and energy optimization using evolutionary algorithm

Author

Listed:
  • Miao, Guang
  • Zhong, Guotian
  • Cai, Guangming
  • Ma, Yujie
  • Zheng, Leizhao
  • Li, Guoqing
  • Xiao, Jing

Abstract

H2 production by steam methane reforming (SMR) is an energy-intensive process at high reaction pressure and temperature. The objective of present work is to improve the efficiency of H2 production by optimizing turbine-integrated SMR-coal gasification process (SMRT-CG). The economic analysis of turbine-integrated SMR process (SMRT) was investigated with decision variables, such as flowrate of natural gas, reaction pressure, and turbine discharge pressure. The optimal price of H2 production was competitive after the addition of turbine. Genetic algorithm (GA) together with waste reduction (WAR) algorithm were used to evaluate the environmental impact of optimal SMRT. Optimization by non-dominated sorting genetic algorithm (NSGA-II) suggested that the total annual profit (TAP) would increase by $1.04 million/y while the effective process exergy loss (ΔExl,eff) would be reduced by 17.4%. Instead of serving as the fuel of SMR furnace, the H2 in tail gas was separated by a pressure-swing adsorption unit. After removing the concentrated CO2, the H2 and CH4 were introduced to a coal gasification plant (CG) to promote the syngas production. Further analysis confirmed that higher H2 formation rate of SMRT-CG process was realized compared to the original CG process due to the chemical looping with the tail gas.

Suggested Citation

  • Miao, Guang & Zhong, Guotian & Cai, Guangming & Ma, Yujie & Zheng, Leizhao & Li, Guoqing & Xiao, Jing, 2022. "Intensification of steam reforming process for off-gas upgrading and energy optimization using evolutionary algorithm," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011914
    DOI: 10.1016/j.energy.2022.124288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ni, Mingjiang & Yang, Tianfeng & Xiao, Gang & Ni, Dong & Zhou, Xin & Liu, Huanlei & Sultan, Umair & Chen, Jinli & Luo, Zhongyang & Cen, Kefa, 2017. "Thermodynamic analysis of a gas turbine cycle combined with fuel reforming for solar thermal power generation," Energy, Elsevier, vol. 137(C), pages 20-30.
    2. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    3. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    4. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    5. Dinca, Cristian & Slavu, Nela & Cormoş, Călin-Cristian & Badea, Adrian, 2018. "CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process," Energy, Elsevier, vol. 149(C), pages 925-936.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    2. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    3. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    4. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    5. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    6. Onyenkeadi, Victor & Kellici, Suela & Saha, Basudeb, 2018. "Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst," Energy, Elsevier, vol. 165(PA), pages 867-876.
    7. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    8. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    9. Francisco Jose Durán & Fernando Dorado & Luz Sanchez-Silva, 2020. "Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool," Energies, MDPI, vol. 13(15), pages 1-15, July.
    10. Sarvar-Ardeh, Sajjad & Rashidi, Saman & Rafee, Roohollah & Li, Guiqiang, 2024. "Recent advances in the applications of solar-driven co-generation systems for heat, freshwater and power," Renewable Energy, Elsevier, vol. 225(C).
    11. Hosseinalipour, S.M. & Fattahi, A. & Khalili, H. & Tootoonchian, F. & Karimi, N., 2020. "Experimental investigation of entropy waves’ evolution for understanding of indirect combustion noise in gas turbine combustors," Energy, Elsevier, vol. 195(C).
    12. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    13. Lee, Boreum & Kim, Hyunwoo & Lee, Hyunjun & Byun, Manhee & Won, Wangyun & Lim, Hankwon, 2020. "Technical and economic feasibility under uncertainty for methane dry reforming of coke oven gas as simultaneous H2 production and CO2 utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Palmieri, A. & Lanzarotto, D. & Cacciacarne, S. & Torre, I. & Bonfiglio, A., 2021. "An innovative sliding mode load controller for gas turbine power generators: Design and experimental validation via real-time simulation," Energy, Elsevier, vol. 217(C).
    15. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    16. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    17. Ali, Hamdy Elsayed Ahmed & El-fayoumy, Eman A. & Soliman, Ramadan M. & Elkhatat, Ahmed & Al-Meer, Saeed & Elsaid, Khaled & Hussein, Hanaa Ali & Zul Helmi Rozaini, Mohd & Azmuddin Abdullah, Mohd, 2024. "Nanoparticle applications in Algal-biorefinery for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    19. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    20. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.

    More about this item

    Keywords

    H2 production; Steam methane reforming; Turbine; Evolutionary algorithm; Coal gasification;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.