IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222010465.html
   My bibliography  Save this article

Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting

Author

Listed:
  • Khodayar, Mahdi
  • Saffari, Mohsen
  • Williams, Michael
  • Jalali, Seyed Mohammad Jafar

Abstract

In recent decades, wind power is rapidly becoming a significant energy resource due to environmental considerations. The accuracy of wind energy forecasts is closely dependent on the prediction of wind speed time series. In this paper, a novel solution for ultra-short-term and short-term wind speed forecasting is introduced. The proposed method consists of a novel real-valued Deep Belief Network (DBN) with a new Rough feature extraction layer (RFEL) and a Fuzzy Type II Inference System (FT2IS) for robust supervised regression. To learn meaningful unsupervised features from the underlying wind speed data, real-valued input units are computed to better approximate the wind data distribution compared to the existing deep learning models. The proposed differentiable RFEL can be applied to any neural network to efficiently extract noise invariant features. A Takagi-Sugeno-Kang (TSK) system with interval Gaussian membership functions is employed for the supervised forecasting task. The high generalization capacity of the proposed unsupervised feature learning model incorporated into the robust RFEL and FT2IS leads to accurate predictions for highly varying wind speed time series. Numerical results on the Western Wind Dataset reveal significant performance improvements compared to recently proposed Deep Learning Architectures (DLAs), including the DBN, Stacked Autoencoder (SAE), and hybrid methodologies that leverage backtracking and metaheuristic optimization.

Suggested Citation

  • Khodayar, Mahdi & Saffari, Mohsen & Williams, Michael & Jalali, Seyed Mohammad Jafar, 2022. "Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222010465
    DOI: 10.1016/j.energy.2022.124143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moreno, Sinvaldo Rodrigues & dos Santos Coelho, Leandro, 2018. "Wind speed forecasting approach based on Singular Spectrum Analysis and Adaptive Neuro Fuzzy Inference System," Renewable Energy, Elsevier, vol. 126(C), pages 736-754.
    2. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.
    3. Xie, Yuying & Li, Chaoshun & Tang, Geng & Liu, Fangjie, 2021. "A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting," Energy, Elsevier, vol. 216(C).
    4. Hu, Shuai & Xiang, Yue & Huo, Da & Jawad, Shafqat & Liu, Junyong, 2021. "An improved deep belief network based hybrid forecasting method for wind power," Energy, Elsevier, vol. 224(C).
    5. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    6. Jiang, Ping & Liu, Zhenkun & Niu, Xinsong & Zhang, Lifang, 2021. "A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting," Energy, Elsevier, vol. 217(C).
    7. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    8. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    9. Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ling & Wang, Jujie & Li, Jianping & Wei, Lu, 2023. "Dual-meta pool method for wind farm power forecasting with small sample data," Energy, Elsevier, vol. 267(C).
    2. Mahdi Khodayar & Jacob Regan, 2023. "Deep Neural Networks in Power Systems: A Review," Energies, MDPI, vol. 16(12), pages 1-38, June.
    3. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    2. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    3. Niu, Dongxiao & Sun, Lijie & Yu, Min & Wang, Keke, 2022. "Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model," Energy, Elsevier, vol. 254(PA).
    4. Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
    5. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.
    6. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    7. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    8. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    9. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    10. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    11. Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
    12. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    13. Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
    14. Yang, Qiuling & Deng, Changhong & Chang, Xiqiang, 2022. "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis," Renewable Energy, Elsevier, vol. 184(C), pages 36-44.
    15. Huang, Xiaojia & Wang, Chen & Zhang, Shenghui, 2024. "Research and application of a Model selection forecasting system for wind speed and theoretical power generation in wind farms based on classification and wind conversion," Energy, Elsevier, vol. 293(C).
    16. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
    17. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    18. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    19. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    20. Li, Yanfei & Shi, Huipeng & Han, Fengze & Duan, Zhu & Liu, Hui, 2019. "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," Renewable Energy, Elsevier, vol. 135(C), pages 540-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222010465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.