IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222006260.html
   My bibliography  Save this article

The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China

Author

Listed:
  • Xu, Qiang
  • Dai, Linxiu
  • Gao, Pinglei
  • Dou, Zhi

Abstract

Traditional rice monoculture is often energy-inefficient because of the large amount of non-renewable energy investment, and leads to negative environmental impacts. This study conducted a joint economic, energy, and life-cycle assessment (LCA) to obtain a comprehensive understanding of the economic and environmental sustainability of rice monoculture (RM), rice-crayfish coculture (RC), rice-loach coculture (RL), and rice-catfish coculture (RA). Economic analysis showed that the total profit of RM was 20,496 ¥ ha−1, while this increased by 172.3%–345.5% in coculture modes. Energy analysis showed that RM outperformed the coculture modes in net energy and energy use efficiency. LCA showed that the environmental footprint varied depending on the functional unit. The coculture modes had a larger environmental footprint than RM, on a per hectare basis across at least six of ten impact categories. The higher nutrition and economic profits meant that the coculture modes had a lower impact per nutrient density unit, and lower impact per RMB yuan across all ten impact categories compared with RM. These findings show that although the energy efficiency of the coculture mode was lower than RM, it showed promise due to its diverse foods with higher nutrition, increased economic benefits, and lower environmental impact.

Suggested Citation

  • Xu, Qiang & Dai, Linxiu & Gao, Pinglei & Dou, Zhi, 2022. "The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006260
    DOI: 10.1016/j.energy.2022.123723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Calker, K. J. & Berentsen, P. B. M. & de Boer, I. M. J. & Giesen, G. W. J. & Huirne, R. B. M., 2004. "An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"," Agricultural Systems, Elsevier, vol. 82(2), pages 139-160, November.
    2. Halwart, M. & Gupta, M.V. (eds.), 2004. "Culture of fish in rice fields," Monographs, The WorldFish Center, number 16334, April.
    3. Mohammadshirazi, Ahmad & Akram, Asadolah & Rafiee, Shahin & Mousavi Avval, Seyyed Hashem & Bagheri Kalhor, Elnaz, 2012. "An analysis of energy use and relation between energy inputs and yield in tangerine production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4515-4521.
    4. Ahmed, Nesar & Zander, Kerstin K. & Garnett, Stephen T., 2011. "Socioeconomic aspects of rice-fish farming in Bangladesh: opportunities, challenges and production efficiency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(2), pages 1-21.
    5. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    6. Murshed-E-Jahan, Khondker & Pemsl, Diemuth E., 2011. "The impact of integrated aquaculture-agriculture on small-scale farm sustainability and farmers' livelihoods: Experience from Bangladesh," Agricultural Systems, Elsevier, vol. 104(5), pages 392-402, June.
    7. Nesar Ahmed & Kerstin K. Zander & Stephen T. Garnett, 2011. "Socioeconomic aspects of rice‐fish farming in Bangladesh: opportunities, challenges and production efficiency," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(2), pages 199-219, April.
    8. Tao Jin & Candi Ge & Hui Gao & Hongcheng Zhang & Xiaolong Sun, 2020. "Evaluation and Screening of Co-Culture Farming Models in Rice Field Based on Food Productivity," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    9. Rahman, Sanzidur & Barmon, Basanta K., 2012. "Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh," Energy, Elsevier, vol. 43(1), pages 293-300.
    10. Paramesh, Venkatesh & Parajuli, Ranjan & Chakurkar, E.B. & Sreekanth, G.B. & Kumar, H.B. Chetan & Gokuldas, P.P. & Mahajan, Gopal R. & Manohara, K.K. & Viswanatha, Reddy K. & Ravisankar, N., 2019. "Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuliana Vinci & Roberto Ruggieri & Marco Ruggeri & Sabrina Antonia Prencipe, 2023. "Rice Production Chain: Environmental and Social Impact Assessment—A Review," Agriculture, MDPI, vol. 13(2), pages 1-25, January.
    2. Fu, Hao & Li, Na & Cheng, Qingyue & Liao, Qin & Nie, Jiangxia & Yin, Huilai & Shu, Chuanhai & Li, Leilei & Wang, Zhonglin & Sun, Yongjian & Chen, Zongkui & Ma, Jun & Zhang, Xiaoli & Li, Liangyu & Yang, 2024. "Energy, environmental, and economic benefits of integrated paddy field farming," Energy, Elsevier, vol. 297(C).
    3. Miloš Pelić & Željko Mihaljev & Milica Živkov Baloš & Nenad Popov & Ana Gavrilović & Jurica Jug-Dujaković & Dragana Ljubojević Pelić, 2023. "The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    4. Donatella Restuccia & Sabrina Antonia Prencipe & Marco Ruggeri & Umile Gianfranco Spizzirri, 2022. "Sustainability Assessment of Different Extra Virgin Olive Oil Extraction Methods through a Life Cycle Thinking Approach: Challenges and Opportunities in the Elaio-Technical Sector," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    5. Jun Yan & Jingwei Yu & Wei Huang & Xiaoxue Pan & Yucheng Li & Shunyao Li & Yalu Tao & Kang Zhang & Xuesheng Zhang, 2023. "Initial Studies on the Effect of the Rice–Duck–Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast ," IJERPH, MDPI, vol. 20(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Abu Hayat, 2015. "Can Integrated Rice-Fish System Increase Welfare of the Marginalized Extreme Poor in Bangladesh? A DID Matching Approach," 2015 Conference, August 9-14, 2015, Milan, Italy 211792, International Association of Agricultural Economists.
    2. Dey, Madan M. & Spielman, David J. & Haque, A.B.M.M. & Rahman, M.S. & Valmonte-Santos, R., 2013. "Change and diversity in smallholder rice–fish systems: Recent evidence and policy lessons from Bangladesh," Food Policy, Elsevier, vol. 43(C), pages 108-117.
    3. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2017. "Technical efficiency for Colombian small crop and livestock farmers: A stochastic metafrontier approach for different production systems," Journal of Productivity Analysis, Springer, vol. 47(1), pages 1-16, February.
    4. Peggy Schrobback & Sean Pascoe & Louisa Coglan, 2014. "Shape Up or Ship Out: Can We Enhance Productivity in Coastal Aquaculture to Compete with Other Uses?," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-25, December.
    5. Ligia Alba Melo-Becerra & Antonio José Orozco-Gallo, 2015. "Eficiencia técnica de los hogares con producción agropecuaria en Colombia," Documentos de trabajo sobre Economía Regional y Urbana 227, Banco de la Republica de Colombia.
    6. O.M. Joffre & S.A. Castine & M.J. Phillips & S. Senaratna Sellamuttu & D. Chandrabalan & P. Cohen, 2017. "Increasing productivity and improving livelihoods in aquatic agricultural systems: a review of interventions," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 39-60, February.
    7. Dey, Madan M. & Spielman David J. & Haque, A.B.M. Mahfuzul & Rahman, Md. Saidur & Valmonte-Santos, Rowena, 2012. "Change and diversity in smallholder rice-fish systems: Recent evidence from Bangladesh," IFPRI discussion papers 1220, International Food Policy Research Institute (IFPRI).
    8. Noorhosseini-Niyaki, Seyyed Ali & Allahyari, Mohammad Sadegh, 2012. "A Logistic Regression Analysis: Agro-Technical Factors Impressible from Fish Farming in Rice Fields, North of Iran," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 2(3).
    9. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    10. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    11. van Calker, Klaas Jan & Antink, Rudi H.J. Hooch & Beldman, Alfons C.G. & Mauser, Anniek, 2005. "Caring Dairy: A Sustainable Dairy Farming Initiative in Europe," 15th Congress, Campinas SP, Brazil, August 14-19, 2005 24234, International Farm Management Association.
    12. Martin-Gorriz, B. & Soto-García, M. & Martínez-Alvarez, V., 2014. "Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios," Energy, Elsevier, vol. 77(C), pages 478-488.
    13. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    14. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    15. Gurib-Fakim, A. & Smith, L. & Acikgoz, N. & Avato, P. & Bossio, Deborah & Ebi, K. & Goncalves, A. & Heinemann, J. A. & Herrmann, T. M. & Padgham, J. & Pennarz, J. & Scheidegger, U. & Sebastian, L. & T, 2009. "Options to enhance the impact of AKST on development and sustainability goals," IWMI Books, Reports H042792, International Water Management Institute.
    16. Eihab Fathelrahman & Aydin Basarir & Mohamed Gheblawi & Sherin Sherif & James Ascough, 2014. "Economic Risk and Efficiency Assessment of Fisheries in Abu-Dhabi, United Arab Emirates (UAE): A Stochastic Approach," Sustainability, MDPI, vol. 6(6), pages 1-21, June.
    17. Tran, Dung Duc & van Halsema, Gerardo & Hellegers, Petra J.G.J. & Ludwig, Fulco & Seijger, Chris, 2018. "Stakeholders’ assessment of dike-protected and flood-based alternatives from a sustainable livelihood perspective in An Giang Province, Mekong Delta, Vietnam," Agricultural Water Management, Elsevier, vol. 206(C), pages 187-199.
    18. Lelyon, Baptiste & Daniel, Karine & Chatellier, Vincent, 2008. "Decoupling and prices: determinant of dairy farmers’ choices? A model to analyse impacts of the 2003 CAP reform," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44250, European Association of Agricultural Economists.
    19. Duncan, Nicolette & de Silva, Sanjiv & Conallin, John & Freed, Sarah & Akester, Michael & Baumgartner, Lee & McCartney, Matthew & Dubois, Mark & Senaratna Sellamuttu, Sonali, 2021. "Fish for whom?: Integrating the management of social complexities into technical investments for inclusive, multi-functional irrigation," World Development Perspectives, Elsevier, vol. 22(C).
    20. Amelie Bernzen & Ellen Mangnus & Franziska Sohns, 2022. "Diversify, produce or buy? An analysis of factors contributing to household dietary diversity among shrimp and non-shrimp farmers in coastal Bangladesh," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 741-761, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.