IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222005710.html
   My bibliography  Save this article

Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization

Author

Listed:
  • E, Shuang
  • Jin, Caidi
  • Liu, Jianglong
  • Yang, Luhan
  • Yang, Ming
  • Xu, Enbo
  • Wang, Kaiying
  • Sheng, Kuichuan
  • Zhang, Ximing

Abstract

The conversion of biomass to functional hydrochar based catalysts for sustainable biorefinery application is critical but still challenging. In this study, mild hydrothermal treatment combined with limited oxygen calcination was developed to treat corn stover and model components for directional preparation of hydrochar based catalysts. The prepared catalysts with various Al active species, exhibited high specific surface area, hierarchical pores, cross-linked carbon microspheres, and excellent catalytic and recycling performances for glucose isomerization. After optimization, a fructose yield of 35.1% (selectivity 77.4%) was obtained at 160 °C for 20 min and it was still more than 25% after the fourth recycling. The reaction kinetics for glucose isomerization was studied. This study established the physicochemical properties-performance relationships of hydrochar based catalysts. The optimized hydrothermal and calcination steps were crucial to improving performance by regulating the active sites and catalyst structures. Moreover, nitrogen, silicon and other elements coupled together could form functional compounds, which is vital for improving the catalytic performance by the synergy between support and Al active center. Three components in corn stover played distinct roles in the catalysis step. This study provides a novel way for developing efficient and recyclable catalysts from biomass, which could be applied in biorefining.

Suggested Citation

  • E, Shuang & Jin, Caidi & Liu, Jianglong & Yang, Luhan & Yang, Ming & Xu, Enbo & Wang, Kaiying & Sheng, Kuichuan & Zhang, Ximing, 2022. "Engineering functional hydrochar based catalyst with corn stover and model components for efficient glucose isomerization," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005710
    DOI: 10.1016/j.energy.2022.123668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
    3. Tu, Ren & Sun, Yan & Wu, Yujian & Fan, Xudong & Cheng, Shuchao & Jiang, Enchen & Xu, Xiwei, 2021. "A new index for hydrochar based on fixed carbon content to predict its structural properties and thermal behavior," Energy, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    2. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    3. Hakimian, Hanie & Pyo, Sumin & Kim, Young-Min & Jae, Jungho & Show, Pau Loke & Rhee, Gwang Hoon & Chen, Wei-Hsin & Park, Young-Kwon, 2022. "Increased aromatics production by co-feeding waste oil sludge to the catalytic pyrolysis of cellulose," Energy, Elsevier, vol. 239(PD).
    4. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    5. Yan, Xiaopeng & Chen, Baijin, 2021. "Analysis of a novel energy-efficient system with 3-D vertical structure for hydraulic press," Energy, Elsevier, vol. 218(C).
    6. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    7. Shangdiar, Sumarlin & Lin, Yuan-Chung & Cheng, Pei-Cheng & Chou, Feng-Chih & Wu, Wen-Ding, 2021. "Development of biochar from the refuse derived fuel (RDF) through organic / inorganic sludge mixed with rice straw and coconut shell," Energy, Elsevier, vol. 215(PB).
    8. Karolina Barčauskaitė & Olga Anne & Ieva Mockevičienė & Regina Repšienė & Gintaras Šiaudinis & Danutė Karčauskienė, 2023. "Determination of Heavy Metals Immobilization by Chemical Fractions in Contaminated Soil Amended with Biochar," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    9. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    10. Motasem Y. D. Alazaiza & Ahmed Albahnasawi & Murat Eyvaz & Tahra Al Maskari & Dia Eddin Nassani & Salem S. Abu Amr & Mohammed Shadi S. Abujazar & Mohammed J. K. Bashir, 2023. "An Overview of Green Bioprocessing of Algae-Derived Biochar and Biopolymers: Synthesis, Preparation, and Potential Applications," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    12. Pessoa Junior, Wanison A.G. & Takeno, Mitsuo L. & Nobre, Francisco X. & Barros, Silma de S. & Sá, Ingrity S.C. & Silva, Edson P. & Manzato, Lizandro & Iglauer, Stefan & de Freitas, Flávio A., 2020. "Application of water treatment sludge as a low-cost and eco-friendly catalyst in the biodiesel production via fatty acids esterification: Process optimization," Energy, Elsevier, vol. 213(C).
    13. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    14. Taufer, Noah Luciano & Benedetti, Vittoria & Pecchi, Matteo & Matsumura, Yukihiko & Baratieri, Marco, 2021. "Coupling hydrothermal carbonization of digestate and supercritical water gasification of liquid products," Renewable Energy, Elsevier, vol. 173(C), pages 934-941.
    15. Hu, Bo & Xu, Lianfei & Li, Yang & Sun, Fei & Wang, Zhuozhi & Yang, Mengchi & Zhang, Yangyang & Kong, Wenwen & Shen, Boxiong & Wang, Xin & Yang, Jiancheng, 2024. "Biochar and Fe2+ mediation in hydrogen production by water electrolysis: Effects of physicochemical properties of biochars," Energy, Elsevier, vol. 297(C).
    16. Bo Wang & Jie Yu & Hui Liao & Wenkun Zhu & Pingping Ding & Jian Zhou, 2020. "Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    17. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    18. Joanna Mikusińska & Monika Kuźnia & Klaudia Czerwińska & Małgorzata Wilk, 2023. "Hydrothermal Carbonization of Digestate Produced in the Biogas Production Process," Energies, MDPI, vol. 16(14), pages 1-18, July.
    19. Setter, C. & Oliveira, T.J.P., 2022. "Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis," Renewable Energy, Elsevier, vol. 189(C), pages 1007-1019.
    20. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.